Characterization of innovative Pt-ceria catalysts for PEMFC by means of ex-situ and operando X-Ray Absorption Spectroscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456759" target="_blank" >RIV/00216208:11320/22:10456759 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.wFMvGcaEt" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.wFMvGcaEt</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijhydene.2021.12.241" target="_blank" >10.1016/j.ijhydene.2021.12.241</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Characterization of innovative Pt-ceria catalysts for PEMFC by means of ex-situ and operando X-Ray Absorption Spectroscopy
Popis výsledku v původním jazyce
As the demand for energy is rising, the role of batteries and fuel cells in everyday life is undeniable, but fuel cell systems are still currently not employed worldwide mainly because of their cost, which is due to the large amount of Pt used in catalyst layers. Recently, it was demonstrated that catalysts composed by low Pt loading (around 10 mg/ cm2) onto ceria (CeOx) matrix are a promising alternative, showing comparable performances with respect to catalysts made by Pt only. Indeed, a strong metal to support interaction between Pt and ceria has been already observed and exploited for application in direct methanol fuel cells. In this context, the aim of the present study is to investigate the stability of innovative Pt-CeOx anode catalyst deposited on two different supports and characterized by means of X-ray Absorption Spectroscopy (XAS). The XANES ex-situ data collected at the Ce L3-edge highlighted the stability of ceria when directly deposited onto the nano-Gas Diffusion Layer (nGDL) whereas it is particu-larly unstable when deposited onto the so-called Carbon Ionomer Layer (CIL), where Ce was found irreversibly reduced to Ce3 thorn upon contact with the air. These behaviors are confirmed also by preliminary test experiments conducted in operando conditions, using a modified fuel cell designed on purpose. In addition, EXAFS data collected ex-situ at the Pt L3 -edge evidenced an increase in the fraction of Pt2 thorn as the overall amount of Pt (or the Pt/Ce ratio) is decreasing, in agreement with existing literature. Our results provide an extended picture about characterization of Pt-CeOx catalyst, focusing on the effects of the hosting support, in order to improve the fabrication of more stable Membrane Electrode Assemblies (MEAs) with low Pt contents to be employed with PEMFCs. (c) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Characterization of innovative Pt-ceria catalysts for PEMFC by means of ex-situ and operando X-Ray Absorption Spectroscopy
Popis výsledku anglicky
As the demand for energy is rising, the role of batteries and fuel cells in everyday life is undeniable, but fuel cell systems are still currently not employed worldwide mainly because of their cost, which is due to the large amount of Pt used in catalyst layers. Recently, it was demonstrated that catalysts composed by low Pt loading (around 10 mg/ cm2) onto ceria (CeOx) matrix are a promising alternative, showing comparable performances with respect to catalysts made by Pt only. Indeed, a strong metal to support interaction between Pt and ceria has been already observed and exploited for application in direct methanol fuel cells. In this context, the aim of the present study is to investigate the stability of innovative Pt-CeOx anode catalyst deposited on two different supports and characterized by means of X-ray Absorption Spectroscopy (XAS). The XANES ex-situ data collected at the Ce L3-edge highlighted the stability of ceria when directly deposited onto the nano-Gas Diffusion Layer (nGDL) whereas it is particu-larly unstable when deposited onto the so-called Carbon Ionomer Layer (CIL), where Ce was found irreversibly reduced to Ce3 thorn upon contact with the air. These behaviors are confirmed also by preliminary test experiments conducted in operando conditions, using a modified fuel cell designed on purpose. In addition, EXAFS data collected ex-situ at the Pt L3 -edge evidenced an increase in the fraction of Pt2 thorn as the overall amount of Pt (or the Pt/Ce ratio) is decreasing, in agreement with existing literature. Our results provide an extended picture about characterization of Pt-CeOx catalyst, focusing on the effects of the hosting support, in order to improve the fabrication of more stable Membrane Electrode Assemblies (MEAs) with low Pt contents to be employed with PEMFCs. (c) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Hydrogen Energy
ISSN
0360-3199
e-ISSN
1879-3487
Svazek periodika
47
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
8799-8810
Kód UT WoS článku
000768763300011
EID výsledku v databázi Scopus
2-s2.0-85122961027