Evaluating a Bayesian-like relevance feedback model with text-to-image search initialization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456792" target="_blank" >RIV/00216208:11320/22:10456792 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Uy8OasMQXW" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Uy8OasMQXW</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11042-022-14046-w" target="_blank" >10.1007/s11042-022-14046-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluating a Bayesian-like relevance feedback model with text-to-image search initialization
Popis výsledku v původním jazyce
Although interactive video retrieval systems often boost search effectiveness, their smart design and optimal usage remains a true challenge. Since verification of design choices or search strategies with real users is tedious and unwieldy task, research efforts in interactive video search area focus also on options for automatic evaluations. This paper contributes to the area with an analysis of artificial user models for relevance feedback based video retrieval systems. Using a state-of-the-art system SOMHunter utilizing the W2VV++ text-image search model, several studies were performed. First, a study without search guidelines was organized with 34 users trying to solve known-item search tasks in a simplified version of SOMHunter. The results of the study were thoroughly analyzed and its data were used to train several artificial user models simulating relevance feedback. The models were evaluated with respect to a second study, where 50 displays of images were annotated by real users. The most promising artificial user model wPCU was selected for simulations analyzing performance of relevance feedback based browsing with different strategies. In a third study, 17 real users achieved on average 70% success rate for a new set of challenging known-item search tasks, strictly following the recommended search strategy. Furthermore, a similar performance for the same set of tasks was predicted by the wPCU model trained with data from the first study. The results and future challenges are thoroughly discussed.
Název v anglickém jazyce
Evaluating a Bayesian-like relevance feedback model with text-to-image search initialization
Popis výsledku anglicky
Although interactive video retrieval systems often boost search effectiveness, their smart design and optimal usage remains a true challenge. Since verification of design choices or search strategies with real users is tedious and unwieldy task, research efforts in interactive video search area focus also on options for automatic evaluations. This paper contributes to the area with an analysis of artificial user models for relevance feedback based video retrieval systems. Using a state-of-the-art system SOMHunter utilizing the W2VV++ text-image search model, several studies were performed. First, a study without search guidelines was organized with 34 users trying to solve known-item search tasks in a simplified version of SOMHunter. The results of the study were thoroughly analyzed and its data were used to train several artificial user models simulating relevance feedback. The models were evaluated with respect to a second study, where 50 displays of images were annotated by real users. The most promising artificial user model wPCU was selected for simulations analyzing performance of relevance feedback based browsing with different strategies. In a third study, 17 real users achieved on average 70% success rate for a new set of challenging known-item search tasks, strictly following the recommended search strategy. Furthermore, a similar performance for the same set of tasks was predicted by the wPCU model trained with data from the first study. The results and future challenges are thoroughly discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-22071Y" target="_blank" >GJ19-22071Y: Flexibilní modely pro hledání známé scény v rozsáhlých kolekcích videa</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Multimedia Tools and Applications
ISSN
1380-7501
e-ISSN
1573-7721
Svazek periodika
82
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
37
Strana od-do
22305-22341
Kód UT WoS článku
000878461100002
EID výsledku v databázi Scopus
2-s2.0-85141208211