Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluating a Bayesian-like relevance feedback model with text-to-image search initialization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456792" target="_blank" >RIV/00216208:11320/22:10456792 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Uy8OasMQXW" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Uy8OasMQXW</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11042-022-14046-w" target="_blank" >10.1007/s11042-022-14046-w</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluating a Bayesian-like relevance feedback model with text-to-image search initialization

  • Popis výsledku v původním jazyce

    Although interactive video retrieval systems often boost search effectiveness, their smart design and optimal usage remains a true challenge. Since verification of design choices or search strategies with real users is tedious and unwieldy task, research efforts in interactive video search area focus also on options for automatic evaluations. This paper contributes to the area with an analysis of artificial user models for relevance feedback based video retrieval systems. Using a state-of-the-art system SOMHunter utilizing the W2VV++ text-image search model, several studies were performed. First, a study without search guidelines was organized with 34 users trying to solve known-item search tasks in a simplified version of SOMHunter. The results of the study were thoroughly analyzed and its data were used to train several artificial user models simulating relevance feedback. The models were evaluated with respect to a second study, where 50 displays of images were annotated by real users. The most promising artificial user model wPCU was selected for simulations analyzing performance of relevance feedback based browsing with different strategies. In a third study, 17 real users achieved on average 70% success rate for a new set of challenging known-item search tasks, strictly following the recommended search strategy. Furthermore, a similar performance for the same set of tasks was predicted by the wPCU model trained with data from the first study. The results and future challenges are thoroughly discussed.

  • Název v anglickém jazyce

    Evaluating a Bayesian-like relevance feedback model with text-to-image search initialization

  • Popis výsledku anglicky

    Although interactive video retrieval systems often boost search effectiveness, their smart design and optimal usage remains a true challenge. Since verification of design choices or search strategies with real users is tedious and unwieldy task, research efforts in interactive video search area focus also on options for automatic evaluations. This paper contributes to the area with an analysis of artificial user models for relevance feedback based video retrieval systems. Using a state-of-the-art system SOMHunter utilizing the W2VV++ text-image search model, several studies were performed. First, a study without search guidelines was organized with 34 users trying to solve known-item search tasks in a simplified version of SOMHunter. The results of the study were thoroughly analyzed and its data were used to train several artificial user models simulating relevance feedback. The models were evaluated with respect to a second study, where 50 displays of images were annotated by real users. The most promising artificial user model wPCU was selected for simulations analyzing performance of relevance feedback based browsing with different strategies. In a third study, 17 real users achieved on average 70% success rate for a new set of challenging known-item search tasks, strictly following the recommended search strategy. Furthermore, a similar performance for the same set of tasks was predicted by the wPCU model trained with data from the first study. The results and future challenges are thoroughly discussed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ19-22071Y" target="_blank" >GJ19-22071Y: Flexibilní modely pro hledání známé scény v rozsáhlých kolekcích videa</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Multimedia Tools and Applications

  • ISSN

    1380-7501

  • e-ISSN

    1573-7721

  • Svazek periodika

    82

  • Číslo periodika v rámci svazku

    June

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    37

  • Strana od-do

    22305-22341

  • Kód UT WoS článku

    000878461100002

  • EID výsledku v databázi Scopus

    2-s2.0-85141208211