Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Unifying View On Task-oriented Dialogue Annotation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10457001" target="_blank" >RIV/00216208:11320/22:10457001 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2022.lrec-1.137/" target="_blank" >https://aclanthology.org/2022.lrec-1.137/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Unifying View On Task-oriented Dialogue Annotation

  • Popis výsledku v původním jazyce

    Every model is only as strong as the data that it is trained on. In this paper, we present a new dataset, obtained by merging four publicly available annotated corpora for task-oriented dialogues in several domains (MultiWOZ 2.2, CamRest676, DSTC2 and Schema-Guided Dialogue Dataset). This way, we assess the feasibility of providing a unified ontology and annotation schema covering several domains with a relatively limited effort. We analyze the characteristics of the resulting dataset along three main dimensions: language, information content and performance. We focus on aspects likely to be pertinent for improving dialogue success, e.g. dialogue consistency. Furthermore, to assess the usability of this new corpus, we thoroughly evaluate dialogue generation performance under various conditions with the help of two prominent recent end-to-end dialogue models: MarCo and GPT-2. These models were selected as popular open implementations representative of the two main dimensions of dialogue modelling. Whil

  • Název v anglickém jazyce

    A Unifying View On Task-oriented Dialogue Annotation

  • Popis výsledku anglicky

    Every model is only as strong as the data that it is trained on. In this paper, we present a new dataset, obtained by merging four publicly available annotated corpora for task-oriented dialogues in several domains (MultiWOZ 2.2, CamRest676, DSTC2 and Schema-Guided Dialogue Dataset). This way, we assess the feasibility of providing a unified ontology and annotation schema covering several domains with a relatively limited effort. We analyze the characteristics of the resulting dataset along three main dimensions: language, information content and performance. We focus on aspects likely to be pertinent for improving dialogue success, e.g. dialogue consistency. Furthermore, to assess the usability of this new corpus, we thoroughly evaluate dialogue generation performance under various conditions with the help of two prominent recent end-to-end dialogue models: MarCo and GPT-2. These models were selected as popular open implementations representative of the two main dimensions of dialogue modelling. Whil

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022)

  • ISBN

    979-10-95546-72-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    1286-1296

  • Název nakladatele

    European Language Resources Association

  • Místo vydání

    Marseille, France

  • Místo konání akce

    Marseille, France

  • Datum konání akce

    20. 6. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku