Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

From COMET to COMES - Can Summary Evaluation Benefit from Translation Evaluation?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10457013" target="_blank" >RIV/00216208:11320/22:10457013 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2022.eval4nlp-1.3.pdf" target="_blank" >https://aclanthology.org/2022.eval4nlp-1.3.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    From COMET to COMES - Can Summary Evaluation Benefit from Translation Evaluation?

  • Popis výsledku v původním jazyce

    Comet is a recently proposed trainable neural-based evaluation metric developed to assess the quality of Machine Translation systems. In this paper, we explore the usage of Comet for evaluating Text Summarization systems -- despite being trained on multilingual MT outputs, it performs remarkably well in monolingual settings, when predicting summarization output quality. We introduce a variant of the model -- Comes -- trained on the annotated summarization outputs that uses MT data for pre-training. We examine its performance on several datasets with human judgments collected for different notions of summary quality, covering several domains and languages.

  • Název v anglickém jazyce

    From COMET to COMES - Can Summary Evaluation Benefit from Translation Evaluation?

  • Popis výsledku anglicky

    Comet is a recently proposed trainable neural-based evaluation metric developed to assess the quality of Machine Translation systems. In this paper, we explore the usage of Comet for evaluating Text Summarization systems -- despite being trained on multilingual MT outputs, it performs remarkably well in monolingual settings, when predicting summarization output quality. We introduce a variant of the model -- Comes -- trained on the annotated summarization outputs that uses MT data for pre-training. We examine its performance on several datasets with human judgments collected for different notions of summary quality, covering several domains and languages.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-26934X" target="_blank" >GX19-26934X: Neuronové reprezentace v multimodálním a mnohojazyčném modelování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů