Morphological Processing of Low-Resource Languages: Where We Are and What's Next
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A2SBUITQ6" target="_blank" >RIV/00216208:11320/22:2SBUITQ6 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2022.findings-acl.80" target="_blank" >https://aclanthology.org/2022.findings-acl.80</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2022.findings-acl.80" target="_blank" >10.18653/v1/2022.findings-acl.80</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Morphological Processing of Low-Resource Languages: Where We Are and What's Next
Popis výsledku v původním jazyce
Automatic morphological processing can aid downstream natural language processing applications, especially for low-resource languages, and assist language documentation efforts for endangered languages. Having long been multilingual, the field of computational morphology is increasingly moving towards approaches suitable for languages with minimal or no annotated resources. First, we survey recent developments in computational morphology with a focus on low-resource languages. Second, we argue that the field is ready to tackle the logical next challenge: understanding a language's morphology from raw text alone. We perform an empirical study on a truly unsupervised version of the paradigm completion task and show that, while existing state-of-the-art models bridged by two newly proposed models we devise perform reasonably, there is still much room for improvement. The stakes are high: solving this task will increase the language coverage of morphological resources by a number of magnitudes.
Název v anglickém jazyce
Morphological Processing of Low-Resource Languages: Where We Are and What's Next
Popis výsledku anglicky
Automatic morphological processing can aid downstream natural language processing applications, especially for low-resource languages, and assist language documentation efforts for endangered languages. Having long been multilingual, the field of computational morphology is increasingly moving towards approaches suitable for languages with minimal or no annotated resources. First, we survey recent developments in computational morphology with a focus on low-resource languages. Second, we argue that the field is ready to tackle the logical next challenge: understanding a language's morphology from raw text alone. We perform an empirical study on a truly unsupervised version of the paradigm completion task and show that, while existing state-of-the-art models bridged by two newly proposed models we devise perform reasonably, there is still much room for improvement. The stakes are high: solving this task will increase the language coverage of morphological resources by a number of magnitudes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Findings of the Association for Computational Linguistics: ACL 2022
ISBN
978-1-955917-25-4
ISSN
—
e-ISSN
—
Počet stran výsledku
20
Strana od-do
988-1007
Název nakladatele
Association for Computational Linguistics
Místo vydání
—
Místo konání akce
Dublin, Ireland
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—