TURNA: A Turkish Encoder-Decoder Language Model for Enhanced Understanding and Generation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ABAEMWDQV" target="_blank" >RIV/00216208:11320/25:BAEMWDQV - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205299390&partnerID=40&md5=3c08dc1ec6bb453a7ff93383c6574842" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205299390&partnerID=40&md5=3c08dc1ec6bb453a7ff93383c6574842</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TURNA: A Turkish Encoder-Decoder Language Model for Enhanced Understanding and Generation
Popis výsledku v původním jazyce
The recent advances in natural language processing have predominantly favored well-resourced English-centric models, resulting in a significant gap with low-resource languages. In this work, we introduce TURNA, a language model developed for the low-resource language Turkish and is capable of both natural language understanding and generation tasks. TURNA is pretrained with an encoder-decoder architecture based on the unified framework UL2 with a diverse corpus that we specifically curated for this purpose. We evaluated TURNA with three generation and five understanding tasks for Turkish. The results show that TURNA outperforms several multilingual models in both understanding and generation tasks, and competes with monolingual Turkish models in understanding tasks. © 2024 Association for Computational Linguistics.
Název v anglickém jazyce
TURNA: A Turkish Encoder-Decoder Language Model for Enhanced Understanding and Generation
Popis výsledku anglicky
The recent advances in natural language processing have predominantly favored well-resourced English-centric models, resulting in a significant gap with low-resource languages. In this work, we introduce TURNA, a language model developed for the low-resource language Turkish and is capable of both natural language understanding and generation tasks. TURNA is pretrained with an encoder-decoder architecture based on the unified framework UL2 with a diverse corpus that we specifically curated for this purpose. We evaluated TURNA with three generation and five understanding tasks for Turkish. The results show that TURNA outperforms several multilingual models in both understanding and generation tasks, and competes with monolingual Turkish models in understanding tasks. © 2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc. Annu. Meet. Assoc. Comput Linguist.
ISBN
979-889176099-8
ISSN
0736-587X
e-ISSN
—
Počet stran výsledku
15
Strana od-do
10103-10117
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
Hybrid, Bangkok
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—