SIGMORPHON–UniMorph 2022 Shared Task 0: Generalization and Typologically Diverse Morphological Inflection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A3BJU2KWP" target="_blank" >RIV/00216208:11320/22:3BJU2KWP - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2022.sigmorphon-1.19" target="_blank" >https://aclanthology.org/2022.sigmorphon-1.19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2022.sigmorphon-1.19" target="_blank" >10.18653/v1/2022.sigmorphon-1.19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SIGMORPHON–UniMorph 2022 Shared Task 0: Generalization and Typologically Diverse Morphological Inflection
Popis výsledku v původním jazyce
The 2022 SIGMORPHON–UniMorph shared task on large scale morphological inflection generation included a wide range of typologically diverse languages: 33 languages from 11 top-level language families: Arabic (Modern Standard), Assamese, Braj, Chukchi, Eastern Armenian, Evenki, Georgian, Gothic, Gujarati, Hebrew, Hungarian, Itelmen, Karelian, Kazakh, Ket, Khalkha Mongolian, Kholosi, Korean, Lamahalot, Low German, Ludic, Magahi, Middle Low German, Old English, Old High German, Old Norse, Polish, Pomak, Slovak, Turkish, Upper Sorbian, Veps, and Xibe. We emphasize generalization along different dimensions this year by evaluating test items with unseen lemmas and unseen features separately under small and large training conditions. Across the five submitted systems and two baselines, the prediction of inflections with unseen features proved challenging, with average performance decreased substantially from last year. This was true even for languages for which the forms were in principle predictable, which suggests that further work is needed in designing systems that capture the various types of generalization required for the world's languages.
Název v anglickém jazyce
SIGMORPHON–UniMorph 2022 Shared Task 0: Generalization and Typologically Diverse Morphological Inflection
Popis výsledku anglicky
The 2022 SIGMORPHON–UniMorph shared task on large scale morphological inflection generation included a wide range of typologically diverse languages: 33 languages from 11 top-level language families: Arabic (Modern Standard), Assamese, Braj, Chukchi, Eastern Armenian, Evenki, Georgian, Gothic, Gujarati, Hebrew, Hungarian, Itelmen, Karelian, Kazakh, Ket, Khalkha Mongolian, Kholosi, Korean, Lamahalot, Low German, Ludic, Magahi, Middle Low German, Old English, Old High German, Old Norse, Polish, Pomak, Slovak, Turkish, Upper Sorbian, Veps, and Xibe. We emphasize generalization along different dimensions this year by evaluating test items with unseen lemmas and unseen features separately under small and large training conditions. Across the five submitted systems and two baselines, the prediction of inflections with unseen features proved challenging, with average performance decreased substantially from last year. This was true even for languages for which the forms were in principle predictable, which suggests that further work is needed in designing systems that capture the various types of generalization required for the world's languages.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology
ISBN
978-1-955917-82-7
ISSN
—
e-ISSN
—
Počet stran výsledku
28
Strana od-do
176-203
Název nakladatele
Association for Computational Linguistics
Místo vydání
—
Místo konání akce
Seattle, Washington
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—