Where Does Linguistic Information Emerge in Neural Language Models? Measuring Gains and Contributions across Layers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A8T27XUX5" target="_blank" >RIV/00216208:11320/22:8T27XUX5 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2022.coling-1.413" target="_blank" >https://aclanthology.org/2022.coling-1.413</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Where Does Linguistic Information Emerge in Neural Language Models? Measuring Gains and Contributions across Layers
Popis výsledku v původním jazyce
Probing studies have extensively explored where in neural language models linguistic information is located. The standard approach to interpreting the results of a probing classifier is to focus on the layers whose representations give the highest performance on the probing task. We propose an alternative method that asks where the task-relevant information emerges in the model. Our framework consists of a family of metrics that explicitly model local information gain relative to the previous layer and each layer's contribution to the model's overall performance. We apply the new metrics to two pairs of syntactic probing tasks with different degrees of complexity and find that the metrics confirm the expected ordering only for one of the pairs. Our local metrics show a massive dominance of the first layers, indicating that the features that contribute the most to our probing tasks are not as high-level as global metrics suggest.
Název v anglickém jazyce
Where Does Linguistic Information Emerge in Neural Language Models? Measuring Gains and Contributions across Layers
Popis výsledku anglicky
Probing studies have extensively explored where in neural language models linguistic information is located. The standard approach to interpreting the results of a probing classifier is to focus on the layers whose representations give the highest performance on the probing task. We propose an alternative method that asks where the task-relevant information emerges in the model. Our framework consists of a family of metrics that explicitly model local information gain relative to the previous layer and each layer's contribution to the model's overall performance. We apply the new metrics to two pairs of syntactic probing tasks with different degrees of complexity and find that the metrics confirm the expected ordering only for one of the pairs. Our local metrics show a massive dominance of the first layers, indicating that the features that contribute the most to our probing tasks are not as high-level as global metrics suggest.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 29th International Conference on Computational Linguistics
ISBN
—
ISSN
2951-2093
e-ISSN
—
Počet stran výsledku
13
Strana od-do
4664-4676
Název nakladatele
International Committee on Computational Linguistics
Místo vydání
—
Místo konání akce
Gyeongju, Republic of Korea
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—