Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Testing the Effectiveness of the Diagnostic Probing Paradigm on Italian Treebanks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3ARWFTI84I" target="_blank" >RIV/00216208:11320/23:RWFTI84I - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151097172&doi=10.3390%2finfo14030144&partnerID=40&md5=838b086eb0b3bfe825fb38678010927b" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151097172&doi=10.3390%2finfo14030144&partnerID=40&md5=838b086eb0b3bfe825fb38678010927b</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/info14030144" target="_blank" >10.3390/info14030144</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Testing the Effectiveness of the Diagnostic Probing Paradigm on Italian Treebanks

  • Popis výsledku v původním jazyce

    "The outstanding performance recently reached by neural language models (NLMs) across many natural language processing (NLP) tasks has steered the debate towards understanding whether NLMs implicitly learn linguistic competence. Probes, i.e., supervised models trained using NLM representations to predict linguistic properties, are frequently adopted to investigate this issue. However, it is still questioned if probing classification tasks really enable such investigation or if they simply hint at surface patterns in the data. This work contributes to this debate by presenting an approach to assessing the effectiveness of a suite of probing tasks aimed at testing the linguistic knowledge implicitly encoded by one of the most prominent NLMs, BERT. To this aim, we compared the performance of probes when predicting gold and automatically altered values of a set of linguistic features. Our experiments were performed on Italian and were evaluated across BERT’s layers and for sentences with different lengths. As a general result, we observed higher performance in the prediction of gold values, thus suggesting that the probing model is sensitive to the distortion of feature values. However, our experiments also showed that the length of a sentence is a highly influential factor that is able to confound the probing model’s predictions. © 2023 by the authors."

  • Název v anglickém jazyce

    Testing the Effectiveness of the Diagnostic Probing Paradigm on Italian Treebanks

  • Popis výsledku anglicky

    "The outstanding performance recently reached by neural language models (NLMs) across many natural language processing (NLP) tasks has steered the debate towards understanding whether NLMs implicitly learn linguistic competence. Probes, i.e., supervised models trained using NLM representations to predict linguistic properties, are frequently adopted to investigate this issue. However, it is still questioned if probing classification tasks really enable such investigation or if they simply hint at surface patterns in the data. This work contributes to this debate by presenting an approach to assessing the effectiveness of a suite of probing tasks aimed at testing the linguistic knowledge implicitly encoded by one of the most prominent NLMs, BERT. To this aim, we compared the performance of probes when predicting gold and automatically altered values of a set of linguistic features. Our experiments were performed on Italian and were evaluated across BERT’s layers and for sentences with different lengths. As a general result, we observed higher performance in the prediction of gold values, thus suggesting that the probing model is sensitive to the distortion of feature values. However, our experiments also showed that the length of a sentence is a highly influential factor that is able to confound the probing model’s predictions. © 2023 by the authors."

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    "Information (Switzerland)"

  • ISSN

    2078-2489

  • e-ISSN

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    144

  • Strana od-do

    1-144

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85151097172