Naturalistic Causal Probing for Morpho-Syntax
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AJ3XGHLXI" target="_blank" >RIV/00216208:11320/23:J3XGHLXI - isvavai.cz</a>
Výsledek na webu
<a href="https://direct.mit.edu/tacl/article-abstract/doi/10.1162/tacl_a_00554/115895" target="_blank" >https://direct.mit.edu/tacl/article-abstract/doi/10.1162/tacl_a_00554/115895</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/tacl_a_00554" target="_blank" >10.1162/tacl_a_00554</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Naturalistic Causal Probing for Morpho-Syntax
Popis výsledku v původním jazyce
"Probing has become a go-to methodology for interpreting and analyzing deep neural models in natural language processing. However, there is still a lack of understanding of the limitations and weaknesses of various types of probes. In this work, we suggest a strategy for input-level intervention on naturalistic sentences. Using our approach, we intervene on the morpho-syntactic features of a sentence, while keeping the rest of the sentence unchanged. Such an intervention allows us to causally probe pre-trained models. We apply our naturalistic causal probing framework to analyze the effects of grammatical gender and number on contextualized representations extracted from three pre-trained models in Spanish, the multilingual versions of BERT, RoBERTa, and GPT-2. Our experiments suggest that naturalistic interventions lead to stable estimates of the causal effects of various linguistic properties. Moreover, our experiments demonstrate the importance of naturalistic causal probing when analyzing pre-trained models."
Název v anglickém jazyce
Naturalistic Causal Probing for Morpho-Syntax
Popis výsledku anglicky
"Probing has become a go-to methodology for interpreting and analyzing deep neural models in natural language processing. However, there is still a lack of understanding of the limitations and weaknesses of various types of probes. In this work, we suggest a strategy for input-level intervention on naturalistic sentences. Using our approach, we intervene on the morpho-syntactic features of a sentence, while keeping the rest of the sentence unchanged. Such an intervention allows us to causally probe pre-trained models. We apply our naturalistic causal probing framework to analyze the effects of grammatical gender and number on contextualized representations extracted from three pre-trained models in Spanish, the multilingual versions of BERT, RoBERTa, and GPT-2. Our experiments suggest that naturalistic interventions lead to stable estimates of the causal effects of various linguistic properties. Moreover, our experiments demonstrate the importance of naturalistic causal probing when analyzing pre-trained models."
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"Transactions of the Association for Computational Linguistics"
ISSN
2307-387X
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
384-403
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—