IDIAPers @ Causal News Corpus 2022: Extracting Cause-Effect-Signal Triplets via Pre-trained Autoregressive Language Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU149353" target="_blank" >RIV/00216305:26230/22:PU149353 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2022.case-1.10/" target="_blank" >https://aclanthology.org/2022.case-1.10/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2022.case-1.10" target="_blank" >10.18653/v1/2022.case-1.10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
IDIAPers @ Causal News Corpus 2022: Extracting Cause-Effect-Signal Triplets via Pre-trained Autoregressive Language Model
Popis výsledku v původním jazyce
In this paper, we describe our shared task submissions for Subtask 2 in CASE-2022, Event Causality Identification with Casual News Corpus. The challenge focused on the automatic detection of all cause-effect-signal spans present in the sentence from news-media. We detect cause-effect-signal spans in a sentence using T5 --- a pre-trained autoregressive language model. We iteratively identify all cause-effect-signal span triplets, always conditioning the prediction of the next triplet on the previously predicted ones. To predict the triplet itself, we consider different causal relationships such as cause->effect->signal. Each triplet component is generated via a language model conditioned on the sentence, the previous parts of the current triplet, and previously predicted triplets. Despite training on an extremely small dataset of 160 samples, our approach achieved competitive performance, being placed second in the competition. Furthermore, we show that assuming either cause->effect or effect->cause order achieves similar results.
Název v anglickém jazyce
IDIAPers @ Causal News Corpus 2022: Extracting Cause-Effect-Signal Triplets via Pre-trained Autoregressive Language Model
Popis výsledku anglicky
In this paper, we describe our shared task submissions for Subtask 2 in CASE-2022, Event Causality Identification with Casual News Corpus. The challenge focused on the automatic detection of all cause-effect-signal spans present in the sentence from news-media. We detect cause-effect-signal spans in a sentence using T5 --- a pre-trained autoregressive language model. We iteratively identify all cause-effect-signal span triplets, always conditioning the prediction of the next triplet on the previously predicted ones. To predict the triplet itself, we consider different causal relationships such as cause->effect->signal. Each triplet component is generated via a language model conditioned on the sentence, the previous parts of the current triplet, and previously predicted triplets. Despite training on an extremely small dataset of 160 samples, our approach achieved competitive performance, being placed second in the competition. Furthermore, we show that assuming either cause->effect or effect->cause order achieves similar results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2022)
ISBN
978-1-959429-05-0
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
70-78
Název nakladatele
Association for Computational Linguistics
Místo vydání
Abu Dhabi
Místo konání akce
Abu Dhabi
Datum konání akce
7. 12. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—