Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

BAD-X: Bilingual Adapters Improve Zero-Shot Cross-Lingual Transfer

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AAQKV4XT9" target="_blank" >RIV/00216208:11320/22:AQKV4XT9 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2022.naacl-main.130" target="_blank" >https://aclanthology.org/2022.naacl-main.130</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2022.naacl-main.130" target="_blank" >10.18653/v1/2022.naacl-main.130</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    BAD-X: Bilingual Adapters Improve Zero-Shot Cross-Lingual Transfer

  • Popis výsledku v původním jazyce

    Adapter modules enable modular and efficient zero-shot cross-lingual transfer, where current state-of-the-art adapter-based approaches learn specialized language adapters (LAs) for individual languages. In this work, we show that it is more effective to learn bilingual language pair adapters (BAs) when the goal is to optimize performance for a particular source-target transfer direction. Our novel BAD-X adapter framework trades off some modularity of dedicated LAs for improved transfer performance: we demonstrate consistent gains in three standard downstream tasks, and for the majority of evaluated low-resource languages.

  • Název v anglickém jazyce

    BAD-X: Bilingual Adapters Improve Zero-Shot Cross-Lingual Transfer

  • Popis výsledku anglicky

    Adapter modules enable modular and efficient zero-shot cross-lingual transfer, where current state-of-the-art adapter-based approaches learn specialized language adapters (LAs) for individual languages. In this work, we show that it is more effective to learn bilingual language pair adapters (BAs) when the goal is to optimize performance for a particular source-target transfer direction. Our novel BAD-X adapter framework trades off some modularity of dedicated LAs for improved transfer performance: we demonstrate consistent gains in three standard downstream tasks, and for the majority of evaluated low-resource languages.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

  • ISBN

    978-1-955917-71-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    1791-1799

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

  • Místo konání akce

    Seattle, United States

  • Datum konání akce

    1. 1. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku