Transfer Learning and Masked Generation for Answer Verbalization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3ACRCQGAVL" target="_blank" >RIV/00216208:11320/22:CRCQGAVL - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2022.suki-1.6" target="_blank" >https://aclanthology.org/2022.suki-1.6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2022.suki-1.6" target="_blank" >10.18653/v1/2022.suki-1.6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transfer Learning and Masked Generation for Answer Verbalization
Popis výsledku v původním jazyce
Structured Knowledge has recently emerged as an essential component to support fine-grained Question Answering (QA). In general, QA systems query a Knowledge Base (KB) to detect and extract the raw answers as final prediction. However, as lacking of context, language generation can offer a much informative and complete response. In this paper, we propose to combine the power of transfer learning and the advantage of entity placeholders to produce high-quality verbalization of extracted answers from a KB. We claim that such approach is especially well-suited for answer generation. Our experiments show 44.25%, 3.26% and 29.10% relative gain in BLEU over the state-of-the-art on the VQuAnDA, ParaQA and VANiLLa datasets, respectively. We additionally provide minor hallucinations corrections in VANiLLa standing for 5% of each of the training and testing set. We witness a median absolute gain of 0.81 SacreBLEU. This strengthens the importance of data quality when using automated evaluation.
Název v anglickém jazyce
Transfer Learning and Masked Generation for Answer Verbalization
Popis výsledku anglicky
Structured Knowledge has recently emerged as an essential component to support fine-grained Question Answering (QA). In general, QA systems query a Knowledge Base (KB) to detect and extract the raw answers as final prediction. However, as lacking of context, language generation can offer a much informative and complete response. In this paper, we propose to combine the power of transfer learning and the advantage of entity placeholders to produce high-quality verbalization of extracted answers from a KB. We claim that such approach is especially well-suited for answer generation. Our experiments show 44.25%, 3.26% and 29.10% relative gain in BLEU over the state-of-the-art on the VQuAnDA, ParaQA and VANiLLa datasets, respectively. We additionally provide minor hallucinations corrections in VANiLLa standing for 5% of each of the training and testing set. We witness a median absolute gain of 0.81 SacreBLEU. This strengthens the importance of data quality when using automated evaluation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Workshop on Structured and Unstructured Knowledge Integration (SUKI)
ISBN
978-1-955917-86-5
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
47-54
Název nakladatele
Association for Computational Linguistics
Místo vydání
—
Místo konání akce
Seattle, USA
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—