Vše
Vše

Co hledáte?

Vše
Projekty
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Transfer Learning and Masked Generation for Answer Verbalization

Popis výsledku

Identifikátory výsledku

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Transfer Learning and Masked Generation for Answer Verbalization

  • Popis výsledku v původním jazyce

    Structured Knowledge has recently emerged as an essential component to support fine-grained Question Answering (QA). In general, QA systems query a Knowledge Base (KB) to detect and extract the raw answers as final prediction. However, as lacking of context, language generation can offer a much informative and complete response. In this paper, we propose to combine the power of transfer learning and the advantage of entity placeholders to produce high-quality verbalization of extracted answers from a KB. We claim that such approach is especially well-suited for answer generation. Our experiments show 44.25%, 3.26% and 29.10% relative gain in BLEU over the state-of-the-art on the VQuAnDA, ParaQA and VANiLLa datasets, respectively. We additionally provide minor hallucinations corrections in VANiLLa standing for 5% of each of the training and testing set. We witness a median absolute gain of 0.81 SacreBLEU. This strengthens the importance of data quality when using automated evaluation.

  • Název v anglickém jazyce

    Transfer Learning and Masked Generation for Answer Verbalization

  • Popis výsledku anglicky

    Structured Knowledge has recently emerged as an essential component to support fine-grained Question Answering (QA). In general, QA systems query a Knowledge Base (KB) to detect and extract the raw answers as final prediction. However, as lacking of context, language generation can offer a much informative and complete response. In this paper, we propose to combine the power of transfer learning and the advantage of entity placeholders to produce high-quality verbalization of extracted answers from a KB. We claim that such approach is especially well-suited for answer generation. Our experiments show 44.25%, 3.26% and 29.10% relative gain in BLEU over the state-of-the-art on the VQuAnDA, ParaQA and VANiLLa datasets, respectively. We additionally provide minor hallucinations corrections in VANiLLa standing for 5% of each of the training and testing set. We witness a median absolute gain of 0.81 SacreBLEU. This strengthens the importance of data quality when using automated evaluation.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Workshop on Structured and Unstructured Knowledge Integration (SUKI)

  • ISBN

    978-1-955917-86-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    47-54

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

  • Místo konání akce

    Seattle, USA

  • Datum konání akce

    1. 1. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

Druh výsledku

D - Stať ve sborníku

D

OECD FORD

Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Rok uplatnění

2022