Enhancing the PARSEME Turkish Corpus of Verbal Multiword Expressions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AJBQJR93X" target="_blank" >RIV/00216208:11320/22:JBQJR93X - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2022.mwe-1.14" target="_blank" >https://aclanthology.org/2022.mwe-1.14</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing the PARSEME Turkish Corpus of Verbal Multiword Expressions
Popis výsledku v původním jazyce
The PARSEME (Parsing and Multiword Expressions) project proposes multilingual corpora annotated for multiword expressions (MWEs). In this case study, we focus on the Turkish corpus of PARSEME. Turkish is an agglutinative language and shows high inflection and derivation in word forms. This can cause some issues in terms of automatic morphosyntactic annotation. We provide an overview of the problems observed in the morphosyntactic annotation of the Turkish PARSEME corpus. These issues are mostly observed on the lemmas, which is important for the approximation of a type of an MWE. We propose modifications of the original corpus with some enhancements on the lemmas and parts of speech. The enhancements are then evaluated with an identification system from the PARSEME Shared Task 1.2 to detect MWEs, namely Seen2Seen. Results show increase in the F-measure for MWE identification, emphasizing the necessity of robust morphosyntactic annotation for MWE processing, especially for languages that show high surface variability.
Název v anglickém jazyce
Enhancing the PARSEME Turkish Corpus of Verbal Multiword Expressions
Popis výsledku anglicky
The PARSEME (Parsing and Multiword Expressions) project proposes multilingual corpora annotated for multiword expressions (MWEs). In this case study, we focus on the Turkish corpus of PARSEME. Turkish is an agglutinative language and shows high inflection and derivation in word forms. This can cause some issues in terms of automatic morphosyntactic annotation. We provide an overview of the problems observed in the morphosyntactic annotation of the Turkish PARSEME corpus. These issues are mostly observed on the lemmas, which is important for the approximation of a type of an MWE. We propose modifications of the original corpus with some enhancements on the lemmas and parts of speech. The enhancements are then evaluated with an identification system from the PARSEME Shared Task 1.2 to detect MWEs, namely Seen2Seen. Results show increase in the F-measure for MWE identification, emphasizing the necessity of robust morphosyntactic annotation for MWE processing, especially for languages that show high surface variability.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 18th Workshop on Multiword Expressions @LREC2022
ISBN
979-10-95546-90-0
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
100-104
Název nakladatele
European Language Resources Association
Místo vydání
—
Místo konání akce
Marseille, France
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—