Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

AGILe: The First Lemmatizer for Ancient Greek Inscriptions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3ANI7HQDNN" target="_blank" >RIV/00216208:11320/22:NI7HQDNN - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2022.lrec-1.571" target="_blank" >https://aclanthology.org/2022.lrec-1.571</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    AGILe: The First Lemmatizer for Ancient Greek Inscriptions

  • Popis výsledku v původním jazyce

    To facilitate corpus searches by classicists as well as to reduce data sparsity when training models, we focus on the automatic lemmatization of ancient Greek inscriptions, which have not received as much attention in this sense as literary text data has. We show that existing lemmatizers for ancient Greek, trained on literary data, are not performant on epigraphic data, due to major language differences between the two types of texts. We thus train the first inscription-specific lemmatizer achieving above 80% accuracy, and make both the models and the lemmatized data available to the community. We also provide a detailed error analysis highlighting peculiarities of inscriptions which again highlights the importance of a lemmatizer dedicated to inscriptions.

  • Název v anglickém jazyce

    AGILe: The First Lemmatizer for Ancient Greek Inscriptions

  • Popis výsledku anglicky

    To facilitate corpus searches by classicists as well as to reduce data sparsity when training models, we focus on the automatic lemmatization of ancient Greek inscriptions, which have not received as much attention in this sense as literary text data has. We show that existing lemmatizers for ancient Greek, trained on literary data, are not performant on epigraphic data, due to major language differences between the two types of texts. We thus train the first inscription-specific lemmatizer achieving above 80% accuracy, and make both the models and the lemmatized data available to the community. We also provide a detailed error analysis highlighting peculiarities of inscriptions which again highlights the importance of a lemmatizer dedicated to inscriptions.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Thirteenth Language Resources and Evaluation Conference

  • ISBN

    979-10-95546-72-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    5334-5344

  • Název nakladatele

    European Language Resources Association

  • Místo vydání

  • Místo konání akce

    Marseille, France

  • Datum konání akce

    1. 1. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku