Probing for Labeled Dependency Trees
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3APQYQ7XZ5" target="_blank" >RIV/00216208:11320/22:PQYQ7XZ5 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2022.acl-long.532" target="_blank" >https://aclanthology.org/2022.acl-long.532</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2022.acl-long.532" target="_blank" >10.18653/v1/2022.acl-long.532</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Probing for Labeled Dependency Trees
Popis výsledku v původním jazyce
Probing has become an important tool for analyzing representations in Natural Language Processing (NLP). For graphical NLP tasks such as dependency parsing, linear probes are currently limited to extracting undirected or unlabeled parse trees which do not capture the full task. This work introduces DepProbe, a linear probe which can extract labeled and directed dependency parse trees from embeddings while using fewer parameters and compute than prior methods. Leveraging its full task coverage and lightweight parametrization, we investigate its predictive power for selecting the best transfer language for training a full biaffine attention parser. Across 13 languages, our proposed method identifies the best source treebank 94% of the time, outperforming competitive baselines and prior work. Finally, we analyze the informativeness of task-specific subspaces in contextual embeddings as well as which benefits a full parser's non-linear parametrization provides.
Název v anglickém jazyce
Probing for Labeled Dependency Trees
Popis výsledku anglicky
Probing has become an important tool for analyzing representations in Natural Language Processing (NLP). For graphical NLP tasks such as dependency parsing, linear probes are currently limited to extracting undirected or unlabeled parse trees which do not capture the full task. This work introduces DepProbe, a linear probe which can extract labeled and directed dependency parse trees from embeddings while using fewer parameters and compute than prior methods. Leveraging its full task coverage and lightweight parametrization, we investigate its predictive power for selecting the best transfer language for training a full biaffine attention parser. Across 13 languages, our proposed method identifies the best source treebank 94% of the time, outperforming competitive baselines and prior work. Finally, we analyze the informativeness of task-specific subspaces in contextual embeddings as well as which benefits a full parser's non-linear parametrization provides.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
ISBN
978-1-955917-21-6
ISSN
—
e-ISSN
—
Počet stran výsledku
16
Strana od-do
7711-7726
Název nakladatele
Association for Computational Linguistics
Místo vydání
—
Místo konání akce
Dublin, Ireland
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—