Sort by Structure: Language Model Ranking as Dependency Probing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AQ7PARVER" target="_blank" >RIV/00216208:11320/22:Q7PARVER - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2022.naacl-main.93" target="_blank" >https://aclanthology.org/2022.naacl-main.93</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2022.naacl-main.93" target="_blank" >10.18653/v1/2022.naacl-main.93</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sort by Structure: Language Model Ranking as Dependency Probing
Popis výsledku v původním jazyce
Making an informed choice of pre-trained language model (LM) is critical for performance, yet environmentally costly, and as such widely underexplored. The field of Computer Vision has begun to tackle encoder ranking, with promising forays into Natural Language Processing, however they lack coverage of linguistic tasks such as structured prediction. We propose probing to rank LMs, specifically for parsing dependencies in a given language, by measuring the degree to which labeled trees are recoverable from an LM's contextualized embeddings. Across 46 typologically and architecturally diverse LM-language pairs, our probing approach predicts the best LM choice 79% of the time using orders of magnitude less compute than training a full parser. Within this study, we identify and analyze one recently proposed decoupled LM—RemBERT—and find it strikingly contains less inherent dependency information, but often yields the best parser after full fine-tuning. Without this outlier our approach identifies the best LM in 89% of cases.
Název v anglickém jazyce
Sort by Structure: Language Model Ranking as Dependency Probing
Popis výsledku anglicky
Making an informed choice of pre-trained language model (LM) is critical for performance, yet environmentally costly, and as such widely underexplored. The field of Computer Vision has begun to tackle encoder ranking, with promising forays into Natural Language Processing, however they lack coverage of linguistic tasks such as structured prediction. We propose probing to rank LMs, specifically for parsing dependencies in a given language, by measuring the degree to which labeled trees are recoverable from an LM's contextualized embeddings. Across 46 typologically and architecturally diverse LM-language pairs, our probing approach predicts the best LM choice 79% of the time using orders of magnitude less compute than training a full parser. Within this study, we identify and analyze one recently proposed decoupled LM—RemBERT—and find it strikingly contains less inherent dependency information, but often yields the best parser after full fine-tuning. Without this outlier our approach identifies the best LM in 89% of cases.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
ISBN
978-1-955917-74-2
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
1296-1307
Název nakladatele
Association for Computational Linguistics
Místo vydání
—
Místo konání akce
Seattle, United States
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—