Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Speech-level Sentiment Analysis of Parliamentary Debates using Lexicon-based Approaches

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3ATPQF87C8" target="_blank" >RIV/00216208:11320/22:TPQF87C8 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://nl.ijs.si/jtdh22/pdf/JTDH2022_Meden_Speech-level-Sentiment-Analysis-of-Parliamentary-Debates-using-Lexicon-based-Approaches.pdf" target="_blank" >https://nl.ijs.si/jtdh22/pdf/JTDH2022_Meden_Speech-level-Sentiment-Analysis-of-Parliamentary-Debates-using-Lexicon-based-Approaches.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Speech-level Sentiment Analysis of Parliamentary Debates using Lexicon-based Approaches

  • Popis výsledku v původním jazyce

    Sentiment analysis or Opinion mining is a widely studied research area in the field of Natural Language Processing (NLP) that involves the identification of polarity (positive, negative or neutral sentiments) of the text, usually done on shorter and emotionally charged text, such as tweets and reviews. Parliamentary debates feature longer paragraphs and a very esoteric speaking style of Members of the Parliament (MPs), making them much more complex. The aim of the paper was to explore how and if lexicon-based approaches can handle the extraction of polarity from parliamentary debates, using the sentiment lexicon VADER (Valence Aware Dictionary and sEntiment Reasoner) and the Liu Hu sentiment lexicon. We performed sentiment analysis with both lexicons, together with topic modelling of positive and negative speeches to gain additional insight into the data. Lastly, we measured the performance of both lexicons, where both performed poorly. Results showed that while both VADER and Liu Hu were able to correctly identify the general sentiment of some topics (i.e., matching positive/negative keywords to positive/negative topics), most speeches themselves are very polarizing in nature, shifting perspectives multiple times. Sentiment lexicons failed to recognise the sentiment in parliamentary speeches that might not be extremely expressive or where a larger sum of intensity-boosting positive words are used to express negativity. We conclude that using lexicon-based approaches (such as VADER and Liu Hu) in their unaltered states alone do not suffice when dealing with data like parliamentary debates, at least not without any modification of lexicons.

  • Název v anglickém jazyce

    Speech-level Sentiment Analysis of Parliamentary Debates using Lexicon-based Approaches

  • Popis výsledku anglicky

    Sentiment analysis or Opinion mining is a widely studied research area in the field of Natural Language Processing (NLP) that involves the identification of polarity (positive, negative or neutral sentiments) of the text, usually done on shorter and emotionally charged text, such as tweets and reviews. Parliamentary debates feature longer paragraphs and a very esoteric speaking style of Members of the Parliament (MPs), making them much more complex. The aim of the paper was to explore how and if lexicon-based approaches can handle the extraction of polarity from parliamentary debates, using the sentiment lexicon VADER (Valence Aware Dictionary and sEntiment Reasoner) and the Liu Hu sentiment lexicon. We performed sentiment analysis with both lexicons, together with topic modelling of positive and negative speeches to gain additional insight into the data. Lastly, we measured the performance of both lexicons, where both performed poorly. Results showed that while both VADER and Liu Hu were able to correctly identify the general sentiment of some topics (i.e., matching positive/negative keywords to positive/negative topics), most speeches themselves are very polarizing in nature, shifting perspectives multiple times. Sentiment lexicons failed to recognise the sentiment in parliamentary speeches that might not be extremely expressive or where a larger sum of intensity-boosting positive words are used to express negativity. We conclude that using lexicon-based approaches (such as VADER and Liu Hu) in their unaltered states alone do not suffice when dealing with data like parliamentary debates, at least not without any modification of lexicons.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Conference on Language Technologies & Digital Humanities

  • ISBN

    978-961-7104-20-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    323-330

  • Název nakladatele

    Inštitut za novejšo zgodovino

  • Místo vydání

  • Místo konání akce

    Ljubljana, Slovenia

  • Datum konání akce

    1. 1. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku