Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exploring Collective Identity, Efficacy Beliefs, Sentiment and Emotions in German Environmental Movements: A Natural Language Processing Approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ATVXQ4LH3" target="_blank" >RIV/00216208:11320/25:TVXQ4LH3 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205830395&partnerID=40&md5=b76188c6b02e140abc505eaf5e3ca398" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205830395&partnerID=40&md5=b76188c6b02e140abc505eaf5e3ca398</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exploring Collective Identity, Efficacy Beliefs, Sentiment and Emotions in German Environmental Movements: A Natural Language Processing Approach

  • Popis výsledku v původním jazyce

    Lexicon-based approaches rooted in Natural Language Processing (NLP) were tested to explore collective identity, collective efficacy beliefs, group sentiment, and group emotions within the framework of the German environmental movement. A dataset comprising 5607 social media posts from six prominent environmental groups in Germany spanning the period from 2022 to 2024 was gathered and analyzed using both Valence Aware Dictionary and sEntiment Reasoner (VADER) and Text-Based Emotion Detection (TBED) with the ed8 dictionary. Additionally, collective identity and collective efficacy beliefs were assessed based on the prevalence of specific representative terms within the texts. To validate the sentiment and emotion scores obtained, a random subset of documents was manually reviewed for comparison. The validation revealed limitations in the reliability of sentiment analysis and TBED methodologies with lexicon-based approaches, potentially stemming from the utilization of German language and climate change-specific content, which may not align optimally with existing lexicons. To enhance the applicability of lexicon-based approaches in such contexts, the development and application of climate change domain-specific lexicons tailored for the German language are recommended for future research endeavors. © 2024 Copyright for this paper by its authors.

  • Název v anglickém jazyce

    Exploring Collective Identity, Efficacy Beliefs, Sentiment and Emotions in German Environmental Movements: A Natural Language Processing Approach

  • Popis výsledku anglicky

    Lexicon-based approaches rooted in Natural Language Processing (NLP) were tested to explore collective identity, collective efficacy beliefs, group sentiment, and group emotions within the framework of the German environmental movement. A dataset comprising 5607 social media posts from six prominent environmental groups in Germany spanning the period from 2022 to 2024 was gathered and analyzed using both Valence Aware Dictionary and sEntiment Reasoner (VADER) and Text-Based Emotion Detection (TBED) with the ed8 dictionary. Additionally, collective identity and collective efficacy beliefs were assessed based on the prevalence of specific representative terms within the texts. To validate the sentiment and emotion scores obtained, a random subset of documents was manually reviewed for comparison. The validation revealed limitations in the reliability of sentiment analysis and TBED methodologies with lexicon-based approaches, potentially stemming from the utilization of German language and climate change-specific content, which may not align optimally with existing lexicons. To enhance the applicability of lexicon-based approaches in such contexts, the development and application of climate change domain-specific lexicons tailored for the German language are recommended for future research endeavors. © 2024 Copyright for this paper by its authors.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    CEUR Workshop Proc.

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    13

  • Strana od-do

    1-13

  • Název nakladatele

    CEUR-WS

  • Místo vydání

  • Místo konání akce

    Hybrid, Liverpool

  • Datum konání akce

    1. 1. 2025

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku