MaTop: An Evaluative Topic Model for Marathi
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AUAXPW2ZM" target="_blank" >RIV/00216208:11320/22:UAXPW2ZM - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-981-16-4538-9_14" target="_blank" >https://doi.org/10.1007/978-981-16-4538-9_14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-16-4538-9_14" target="_blank" >10.1007/978-981-16-4538-9_14</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MaTop: An Evaluative Topic Model for Marathi
Popis výsledku v původním jazyce
Topic modeling is a text mining technique that presents the theme of the corpus by identifying latent features of the language. It thus provides contextual information of the documents in the form of topics and their representative words, thereby reducing time, efforts, etc. Topic modeling on English corpus is a common task, but topic modeling on regional languages like Marathi is not explored yet. The proposed approach implements a topic model on Marathi corpus containing more than 1200 documents. Intrinsic evaluation of latent Dirichlet allocation (LDA) which is used to implement the topic model is carried out by coherence measure. Its value is maximum for 4 topics. The retrieved topics are related to ‘Akbar–Birbal,’ ‘Animal stories,’ ‘Advise giving stories’ and ‘general stories.’ Dendrogram and word cloud are used for visualization. The dendrogram shows topic-wise documents and word cloud show sample informative words from different stories. The proposed approach involves context while deriving the topics using synsets. Entropy value is 1.5 for varied datasets; entropy value ensures independence of topic and similarity between topics’ words.
Název v anglickém jazyce
MaTop: An Evaluative Topic Model for Marathi
Popis výsledku anglicky
Topic modeling is a text mining technique that presents the theme of the corpus by identifying latent features of the language. It thus provides contextual information of the documents in the form of topics and their representative words, thereby reducing time, efforts, etc. Topic modeling on English corpus is a common task, but topic modeling on regional languages like Marathi is not explored yet. The proposed approach implements a topic model on Marathi corpus containing more than 1200 documents. Intrinsic evaluation of latent Dirichlet allocation (LDA) which is used to implement the topic model is carried out by coherence measure. Its value is maximum for 4 topics. The retrieved topics are related to ‘Akbar–Birbal,’ ‘Animal stories,’ ‘Advise giving stories’ and ‘general stories.’ Dendrogram and word cloud are used for visualization. The dendrogram shows topic-wise documents and word cloud show sample informative words from different stories. The proposed approach involves context while deriving the topics using synsets. Entropy value is 1.5 for varied datasets; entropy value ensures independence of topic and similarity between topics’ words.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Third International Conference on Sustainable Computing
ISBN
978-981-16-4538-9
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
135-144
Název nakladatele
Springer Nature
Místo vydání
—
Místo konání akce
Singapore
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—