Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

MaTop: An Evaluative Topic Model for Marathi

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AUAXPW2ZM" target="_blank" >RIV/00216208:11320/22:UAXPW2ZM - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-981-16-4538-9_14" target="_blank" >https://doi.org/10.1007/978-981-16-4538-9_14</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-16-4538-9_14" target="_blank" >10.1007/978-981-16-4538-9_14</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    MaTop: An Evaluative Topic Model for Marathi

  • Popis výsledku v původním jazyce

    Topic modeling is a text mining technique that presents the theme of the corpus by identifying latent features of the language. It thus provides contextual information of the documents in the form of topics and their representative words, thereby reducing time, efforts, etc. Topic modeling on English corpus is a common task, but topic modeling on regional languages like Marathi is not explored yet. The proposed approach implements a topic model on Marathi corpus containing more than 1200 documents. Intrinsic evaluation of latent Dirichlet allocation (LDA) which is used to implement the topic model is carried out by coherence measure. Its value is maximum for 4 topics. The retrieved topics are related to ‘Akbar–Birbal,’ ‘Animal stories,’ ‘Advise giving stories’ and ‘general stories.’ Dendrogram and word cloud are used for visualization. The dendrogram shows topic-wise documents and word cloud show sample informative words from different stories. The proposed approach involves context while deriving the topics using synsets. Entropy value is 1.5 for varied datasets; entropy value ensures independence of topic and similarity between topics’ words.

  • Název v anglickém jazyce

    MaTop: An Evaluative Topic Model for Marathi

  • Popis výsledku anglicky

    Topic modeling is a text mining technique that presents the theme of the corpus by identifying latent features of the language. It thus provides contextual information of the documents in the form of topics and their representative words, thereby reducing time, efforts, etc. Topic modeling on English corpus is a common task, but topic modeling on regional languages like Marathi is not explored yet. The proposed approach implements a topic model on Marathi corpus containing more than 1200 documents. Intrinsic evaluation of latent Dirichlet allocation (LDA) which is used to implement the topic model is carried out by coherence measure. Its value is maximum for 4 topics. The retrieved topics are related to ‘Akbar–Birbal,’ ‘Animal stories,’ ‘Advise giving stories’ and ‘general stories.’ Dendrogram and word cloud are used for visualization. The dendrogram shows topic-wise documents and word cloud show sample informative words from different stories. The proposed approach involves context while deriving the topics using synsets. Entropy value is 1.5 for varied datasets; entropy value ensures independence of topic and similarity between topics’ words.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of Third International Conference on Sustainable Computing

  • ISBN

    978-981-16-4538-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    135-144

  • Název nakladatele

    Springer Nature

  • Místo vydání

  • Místo konání akce

    Singapore

  • Datum konání akce

    1. 1. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku