Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Analysis of Technology Development Trends Based on the Network Semantic Structure “Subject-Action-Object”

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AW86B969U" target="_blank" >RIV/00216208:11320/22:W86B969U - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-030-95116-0_4" target="_blank" >https://doi.org/10.1007/978-3-030-95116-0_4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-95116-0_4" target="_blank" >10.1007/978-3-030-95116-0_4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Analysis of Technology Development Trends Based on the Network Semantic Structure “Subject-Action-Object”

  • Popis výsledku v původním jazyce

    The chapter presents the approaches and technologies used to solve the problem of analyzing trends in technology development based on the network semantic structure “Subject-Action-Object”. From the point of view of information about the invention itself, the most important is the description of the invention to the patent. In electronic databases of patents, all patents begin precisely with the description of the invention to the patent, which in turn has its title page. This form of the description of the invention to the patent is unified, and all patents are presented in this form, that is, all patents are equally structured. It is this block of the patent—information about the invention must be investigated using the network semantic structure “Subject-Action-Object”. To solve this problem, the structure of the patent was studied; Hadoop technologies, Spark MlLib, clustering methods. Grid computing technologies have been chosen as a successful and efficient means of processing large text data in the form of patents. An algorithm for parsing a patent document has been developed; an algorithm for preprocessing text documents of a patent selection; a Subject-Action-Object (SAO) extraction algorithm; an algorithm for forming a patent landscape for a certain period. The concept and architecture of the automated system have been formed, the proposed algorithms have been implemented in software.

  • Název v anglickém jazyce

    The Analysis of Technology Development Trends Based on the Network Semantic Structure “Subject-Action-Object”

  • Popis výsledku anglicky

    The chapter presents the approaches and technologies used to solve the problem of analyzing trends in technology development based on the network semantic structure “Subject-Action-Object”. From the point of view of information about the invention itself, the most important is the description of the invention to the patent. In electronic databases of patents, all patents begin precisely with the description of the invention to the patent, which in turn has its title page. This form of the description of the invention to the patent is unified, and all patents are presented in this form, that is, all patents are equally structured. It is this block of the patent—information about the invention must be investigated using the network semantic structure “Subject-Action-Object”. To solve this problem, the structure of the patent was studied; Hadoop technologies, Spark MlLib, clustering methods. Grid computing technologies have been chosen as a successful and efficient means of processing large text data in the form of patents. An algorithm for parsing a patent document has been developed; an algorithm for preprocessing text documents of a patent selection; a Subject-Action-Object (SAO) extraction algorithm; an algorithm for forming a patent landscape for a certain period. The concept and architecture of the automated system have been formed, the proposed algorithms have been implemented in software.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů