Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Extracting the Component Composition Data of Inventions from Russian Patents using Dependency Tree Analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AP85HG2W3" target="_blank" >RIV/00216208:11320/23:P85HG2W3 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162852443&doi=10.1109%2fICIEAM57311.2023.10139170&partnerID=40&md5=1ba465dae2c137c40b44d92621dc4334" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162852443&doi=10.1109%2fICIEAM57311.2023.10139170&partnerID=40&md5=1ba465dae2c137c40b44d92621dc4334</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/icieam57311.2023.10139170" target="_blank" >10.1109/icieam57311.2023.10139170</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Extracting the Component Composition Data of Inventions from Russian Patents using Dependency Tree Analysis

  • Popis výsledku v původním jazyce

    "The paper presents a methodology for extracting device components and relationships between them from the Russian-language patent claims. Information about the components of the device is the most useful and important part. It can be used in various tasks of patent analysis. The objective of this study is to evaluate the the quality of data extraction using dependency tree analysis for Russian language. The dependency tree for a sentence is the result of syntactic parsing by natural language processing tools. There are several parsers were chosen for comparison: UdPipe, Stanza, DeepPavlov, spaCy and Trankit. The output data are presented in the form of SAO structures (Subject-Action-Object). The quality of data extraction has been evaluated using precision, recall and F1 metrics. For this purpose, 20 patent claims with 252 SAO structures were manually marked. Under the current methodological constraints, on the test dataset, at best we are able to extract 81% of the SAO structures according to the recall metric with a non-strict data evaluation, i.e. without considering the completeness of a noun phrases. The F1-measure is lower and ranges from 48% to 69% depending on evaluation type. The current level of parsers efficiency in the investigated area is summarized. The results can be useful for developing efficient approaches to extracting structured data from patent arrays. © 2023 IEEE."

  • Název v anglickém jazyce

    Extracting the Component Composition Data of Inventions from Russian Patents using Dependency Tree Analysis

  • Popis výsledku anglicky

    "The paper presents a methodology for extracting device components and relationships between them from the Russian-language patent claims. Information about the components of the device is the most useful and important part. It can be used in various tasks of patent analysis. The objective of this study is to evaluate the the quality of data extraction using dependency tree analysis for Russian language. The dependency tree for a sentence is the result of syntactic parsing by natural language processing tools. There are several parsers were chosen for comparison: UdPipe, Stanza, DeepPavlov, spaCy and Trankit. The output data are presented in the form of SAO structures (Subject-Action-Object). The quality of data extraction has been evaluated using precision, recall and F1 metrics. For this purpose, 20 patent claims with 252 SAO structures were manually marked. Under the current methodological constraints, on the test dataset, at best we are able to extract 81% of the SAO structures according to the recall metric with a non-strict data evaluation, i.e. without considering the completeness of a noun phrases. The F1-measure is lower and ranges from 48% to 69% depending on evaluation type. The current level of parsers efficiency in the investigated area is summarized. The results can be useful for developing efficient approaches to extracting structured data from patent arrays. © 2023 IEEE."

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    "Proc. - Int. Conf. Ind. Eng., Appl. Manuf., ICIEAM"

  • ISBN

    978-166547595-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    1030-1034

  • Název nakladatele

    Institute of Electrical and Electronics Engineers Inc.

  • Místo vydání

  • Místo konání akce

    Cham

  • Datum konání akce

    1. 1. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku