Who Does What to Whom? Making Text Parsers Work for Sociological Inquiry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AWK3L5GW7" target="_blank" >RIV/00216208:11320/22:WK3L5GW7 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1177/00491241221099551" target="_blank" >https://doi.org/10.1177/00491241221099551</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/00491241221099551" target="_blank" >10.1177/00491241221099551</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Who Does What to Whom? Making Text Parsers Work for Sociological Inquiry
Popis výsledku v původním jazyce
Over the past decade, sociologists have become increasingly interested in the formal study of semantic relations within text. Most contemporary studies focus either on mapping concept co-occurrences or on measuring semantic associations via word embeddings. Although conducive to many research goals, these approaches share an important limitation: they abstract away what one can call the event structure of texts, that is, the narrative action that takes place in them. I aim to overcome this limitation by introducing a new framework for extracting semantically rich relations from text that involves three components. First, a semantic grammar structured around textual entities that distinguishes six motif classes: actions of an entity, treatments of an entity, agents acting upon an entity, patients acted upon by an entity, characterizations of an entity, and possessions of an entity; second, a comprehensive set of mapping rules, which make it possible to recover motifs from predictions of dependency parsers; third, an R package that allows researchers to extract motifs from their own texts. The framework is demonstrated in empirical analyses on gendered interaction in novels and constructions of collective identity by U.S. presidential candidates.
Název v anglickém jazyce
Who Does What to Whom? Making Text Parsers Work for Sociological Inquiry
Popis výsledku anglicky
Over the past decade, sociologists have become increasingly interested in the formal study of semantic relations within text. Most contemporary studies focus either on mapping concept co-occurrences or on measuring semantic associations via word embeddings. Although conducive to many research goals, these approaches share an important limitation: they abstract away what one can call the event structure of texts, that is, the narrative action that takes place in them. I aim to overcome this limitation by introducing a new framework for extracting semantically rich relations from text that involves three components. First, a semantic grammar structured around textual entities that distinguishes six motif classes: actions of an entity, treatments of an entity, agents acting upon an entity, patients acted upon by an entity, characterizations of an entity, and possessions of an entity; second, a comprehensive set of mapping rules, which make it possible to recover motifs from predictions of dependency parsers; third, an R package that allows researchers to extract motifs from their own texts. The framework is demonstrated in empirical analyses on gendered interaction in novels and constructions of collective identity by U.S. presidential candidates.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sociological Methods and Research
ISSN
0049-1241
e-ISSN
1552-8294
Svazek periodika
51
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
54
Strana od-do
1580-1633
Kód UT WoS článku
000798694600001
EID výsledku v databázi Scopus
2-s2.0-85132634656