On Efficiently Acquiring Annotations for Multilingual Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AWT4LPUIU" target="_blank" >RIV/00216208:11320/22:WT4LPUIU - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2022.acl-short.9" target="_blank" >https://aclanthology.org/2022.acl-short.9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2022.acl-short.9" target="_blank" >10.18653/v1/2022.acl-short.9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Efficiently Acquiring Annotations for Multilingual Models
Popis výsledku v původním jazyce
When tasked with supporting multiple languages for a given problem, two approaches have arisen: training a model for each language with the annotation budget divided equally among them, and training on a high-resource language followed by zero-shot transfer to the remaining languages. In this work, we show that the strategy of joint learning across multiple languages using a single model performs substantially better than the aforementioned alternatives. We also demonstrate that active learning provides additional, complementary benefits. We show that this simple approach enables the model to be data efficient by allowing it to arbitrate its annotation budget to query languages it is less certain on. We illustrate the effectiveness of our proposed method on a diverse set of tasks: a classification task with 4 languages, a sequence tagging task with 4 languages and a dependency parsing task with 5 languages. Our proposed method, whilst simple, substantially outperforms the other viable alternatives for building a model in a multilingual setting under constrained budgets.
Název v anglickém jazyce
On Efficiently Acquiring Annotations for Multilingual Models
Popis výsledku anglicky
When tasked with supporting multiple languages for a given problem, two approaches have arisen: training a model for each language with the annotation budget divided equally among them, and training on a high-resource language followed by zero-shot transfer to the remaining languages. In this work, we show that the strategy of joint learning across multiple languages using a single model performs substantially better than the aforementioned alternatives. We also demonstrate that active learning provides additional, complementary benefits. We show that this simple approach enables the model to be data efficient by allowing it to arbitrate its annotation budget to query languages it is less certain on. We illustrate the effectiveness of our proposed method on a diverse set of tasks: a classification task with 4 languages, a sequence tagging task with 4 languages and a dependency parsing task with 5 languages. Our proposed method, whilst simple, substantially outperforms the other viable alternatives for building a model in a multilingual setting under constrained budgets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
ISBN
978-1-955917-22-3
ISSN
—
e-ISSN
—
Počet stran výsledku
17
Strana od-do
69-85
Název nakladatele
Association for Computational Linguistics
Místo vydání
—
Místo konání akce
Dublin, Ireland
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—