Weak supervision for Question Type Detection with large language models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43967256" target="_blank" >RIV/49777513:23520/22:43967256 - isvavai.cz</a>
Výsledek na webu
<a href="https://hal.science/hal-03786135/file/paper.pdf" target="_blank" >https://hal.science/hal-03786135/file/paper.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2022-345" target="_blank" >10.21437/Interspeech.2022-345</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Weak supervision for Question Type Detection with large language models
Popis výsledku v původním jazyce
Large pre-trained language models (LLM) have shown remarkable Zero-Shot Learning performances in many Natural Language Processing tasks. However, designing effective prompts is still very difficult for some tasks, in particular for dialogue act recognition. We propose an alternative way to leverage pretrained LLM for such tasks that replace manual prompts with simple rules, which are more intuitive and easier to design for some tasks. We demonstrate this approach on the question type recognition task, and show that our zero-shot model obtains competitive performances both with a supervised LSTM trained on the full training corpus, and another supervised model from previously published works on the MRDA corpus. We further analyze the limits of the proposed approach, which can not be applied on any task, but may advantageously complement prompt programming for specific classes.
Název v anglickém jazyce
Weak supervision for Question Type Detection with large language models
Popis výsledku anglicky
Large pre-trained language models (LLM) have shown remarkable Zero-Shot Learning performances in many Natural Language Processing tasks. However, designing effective prompts is still very difficult for some tasks, in particular for dialogue act recognition. We propose an alternative way to leverage pretrained LLM for such tasks that replace manual prompts with simple rules, which are more intuitive and easier to design for some tasks. We demonstrate this approach on the question type recognition task, and show that our zero-shot model obtains competitive performances both with a supervised LSTM trained on the full training corpus, and another supervised model from previously published works on the MRDA corpus. We further analyze the limits of the proposed approach, which can not be applied on any task, but may advantageously complement prompt programming for specific classes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
23rd Annual Conference of the International Speech Communication, Interspeech 2022
ISBN
—
ISSN
2308-457X
e-ISSN
—
Počet stran výsledku
5
Strana od-do
3283-3287
Název nakladatele
International Speech Communication Association (ISCA)
Místo vydání
Baixas
Místo konání akce
Incheon, Jižní Korea
Datum konání akce
18. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000900724503090