Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Graph-based Dependency Parser Building for Myanmar Language

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AXWWRJVEQ" target="_blank" >RIV/00216208:11320/22:XWWRJVEQ - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/iSAI-NLP56921.2022.9960267" target="_blank" >https://doi.org/10.1109/iSAI-NLP56921.2022.9960267</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/iSAI-NLP56921.2022.9960267" target="_blank" >10.1109/iSAI-NLP56921.2022.9960267</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Graph-based Dependency Parser Building for Myanmar Language

  • Popis výsledku v původním jazyce

    Examining the relationships between words in a sentence to determine its grammatical structure is known as dependency parsing (DP). Based on this, a sentence is broken down into several components. The process is based on the concept that every linguistic component of a sentence has a direct relationship to one another. These relationships are called dependencies. Dependency parsing is one of the key steps in natural language processing (NLP) for several text mining approaches. As the dominant formalism for dependency parsing in recent years, Universal Dependencies (UD) have emerged. The various UD corpus and dependency parsers are publicly accessible for resource-rich languages. However, there are no publicly available resources for dependency parsing, especially for the low-resource language, Myanmar. Thus, we manually extended the existing small Myanmar UD corpus (i.e., myPOS UD corpus) as myPOS version 3.0 UD corpus to publish the extended Myanmar UD corpus as the publicly available resource. To evaluate the effects of the extended UD corpus versus the original UD corpus, we utilized the graph-based neural dependency parsing models, namely, jPTDP (joint POS tagging and dependency parsing) and UniParse (universal graph-based parsing), and the evaluation scores are measured in terms of unlabeled and labeled attachment scores: (UAS) and (LAS). We compared the accuracies of graph-based neural models based on the original and extended UD corpora. The experimental results showed that, compared to the original myPOS UD corpus, the extended myPOS version 3.0 UD corpus enhanced the accuracy of dependency parsing models.

  • Název v anglickém jazyce

    Graph-based Dependency Parser Building for Myanmar Language

  • Popis výsledku anglicky

    Examining the relationships between words in a sentence to determine its grammatical structure is known as dependency parsing (DP). Based on this, a sentence is broken down into several components. The process is based on the concept that every linguistic component of a sentence has a direct relationship to one another. These relationships are called dependencies. Dependency parsing is one of the key steps in natural language processing (NLP) for several text mining approaches. As the dominant formalism for dependency parsing in recent years, Universal Dependencies (UD) have emerged. The various UD corpus and dependency parsers are publicly accessible for resource-rich languages. However, there are no publicly available resources for dependency parsing, especially for the low-resource language, Myanmar. Thus, we manually extended the existing small Myanmar UD corpus (i.e., myPOS UD corpus) as myPOS version 3.0 UD corpus to publish the extended Myanmar UD corpus as the publicly available resource. To evaluate the effects of the extended UD corpus versus the original UD corpus, we utilized the graph-based neural dependency parsing models, namely, jPTDP (joint POS tagging and dependency parsing) and UniParse (universal graph-based parsing), and the evaluation scores are measured in terms of unlabeled and labeled attachment scores: (UAS) and (LAS). We compared the accuracies of graph-based neural models based on the original and extended UD corpora. The experimental results showed that, compared to the original myPOS UD corpus, the extended myPOS version 3.0 UD corpus enhanced the accuracy of dependency parsing models.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)

  • ISBN

    978-1-66545-727-9

  • ISSN

    2831-4565

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    1-6

  • Název nakladatele

    IEEE

  • Místo vydání

  • Místo konání akce

    Chiang Mai, Thailand

  • Datum konání akce

    1. 1. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000900145700024