Slovak Language Models for Basic Preprocessing Tasks in Python
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3ASV3PYY48" target="_blank" >RIV/00216208:11320/23:SV3PYY48 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ceeol.com/search/article-detail?id=1191258" target="_blank" >https://www.ceeol.com/search/article-detail?id=1191258</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/jazcas-2023-0049" target="_blank" >10.2478/jazcas-2023-0049</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Slovak Language Models for Basic Preprocessing Tasks in Python
Popis výsledku v původním jazyce
"We propose a Slovak language model for the spaCy library in Python. These models are easy-to-use for basic natural language processing tasks in a single package. The package contains several components for basic preprocessing tasks, such as tokenization, sentence boundary detection, syntactic parsing, lemmatization, named entity recognition, morphology analysis, and word vectors. It is based on the state-of-the-art monolingual SlovakBERT model. Named entity recognition is trained on a separate, publicly available WikiAnn database. The other statistical classifiers use a Slovak Dependency Treebank corpus. Morphological tags are compatible with the conventions of the Slovak National Corpus. The part of speech tags use conventions of the Universal Dependencies framework. We trained a separate word vector model on a web-based corpus. The training uses fastText with Floret modification. We present a series of experiments that confirm that the model performs similarly to other languages for all tasks. Training scripts and data are publicly available."
Název v anglickém jazyce
Slovak Language Models for Basic Preprocessing Tasks in Python
Popis výsledku anglicky
"We propose a Slovak language model for the spaCy library in Python. These models are easy-to-use for basic natural language processing tasks in a single package. The package contains several components for basic preprocessing tasks, such as tokenization, sentence boundary detection, syntactic parsing, lemmatization, named entity recognition, morphology analysis, and word vectors. It is based on the state-of-the-art monolingual SlovakBERT model. Named entity recognition is trained on a separate, publicly available WikiAnn database. The other statistical classifiers use a Slovak Dependency Treebank corpus. Morphological tags are compatible with the conventions of the Slovak National Corpus. The part of speech tags use conventions of the Universal Dependencies framework. We trained a separate word vector model on a web-based corpus. The training uses fastText with Floret modification. We present a series of experiments that confirm that the model performs similarly to other languages for all tasks. Training scripts and data are publicly available."
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"Jazykovednỳ časopis"
ISSN
0021-5597
e-ISSN
—
Svazek periodika
2023
Číslo periodika v rámci svazku
74
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
323-332
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—