Quality of Word Vectors and Its Impact on Named Entity Recognition in Czech
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F20%3A43918937" target="_blank" >RIV/62156489:43110/20:43918937 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.11118/ejobsat.2020.010" target="_blank" >https://doi.org/10.11118/ejobsat.2020.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.11118/ejobsat.2020.010" target="_blank" >10.11118/ejobsat.2020.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quality of Word Vectors and Its Impact on Named Entity Recognition in Czech
Popis výsledku v původním jazyce
Named Entity Recognition (NER) focuses on finding named entities in text and classifying them into one of the entity types. Modern state-of-the-art NER approaches avoid using hand-crafted features and rely on feature-inferring neural network systems based on word embeddings. The paper analyzes the impact of different aspects related to word embeddings on the process and results of the named entity recognition task in Czech, which has not been investigated so far. Various aspects of word vectors preparation were experimentally examined to draw useful conclusions. The suitable settings in different steps were determined, including the used corpus, number of word vectors dimensions, used text preprocessing techniques, context window size, number of training epochs, and word vectors inferring algorithms and their specific parameters. The paper demonstrates that focusing on the process of word vectors preparation can bring a significant improvement for NER in Czech even without using additional language independent and dependent resources.
Název v anglickém jazyce
Quality of Word Vectors and Its Impact on Named Entity Recognition in Czech
Popis výsledku anglicky
Named Entity Recognition (NER) focuses on finding named entities in text and classifying them into one of the entity types. Modern state-of-the-art NER approaches avoid using hand-crafted features and rely on feature-inferring neural network systems based on word embeddings. The paper analyzes the impact of different aspects related to word embeddings on the process and results of the named entity recognition task in Czech, which has not been investigated so far. Various aspects of word vectors preparation were experimentally examined to draw useful conclusions. The suitable settings in different steps were determined, including the used corpus, number of word vectors dimensions, used text preprocessing techniques, context window size, number of training epochs, and word vectors inferring algorithms and their specific parameters. The paper demonstrates that focusing on the process of word vectors preparation can bring a significant improvement for NER in Czech even without using additional language independent and dependent resources.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Business Science and Technology
ISSN
2336-6494
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
154-169
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85099840520