Generalization of Machine-Learning Adaptation in Ensemble-Based Self-adaptive Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10467589" target="_blank" >RIV/00216208:11320/23:10467589 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-36889-9_26" target="_blank" >https://doi.org/10.1007/978-3-031-36889-9_26</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-36889-9_26" target="_blank" >10.1007/978-3-031-36889-9_26</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalization of Machine-Learning Adaptation in Ensemble-Based Self-adaptive Systems
Popis výsledku v původním jazyce
Smart self-adaptive systems are nowadays commonly employed almost in any application domain. Within them, groups of robots, autonomous vehicles, drones, and similar automatons dynamically cooperate to achieve a common goal. An approach to model such dynamic cooperation is via autonomic component ensembles, which are dynamically formed groups of components. Forming ensembles is described via a set of constraints (e.g., form an ensemble of three drones closest to a target that have sufficient battery level to reach the target and stay there). Evaluating these constraints by traditional means (such as a SAT solver) is computationally demanding and does not scale for large systems. This paper proposes an approach for solving ensemble formations based on machine learning which may be relatively faster. The method trains the model on a small instance of the system governed by a computationally demanding algorithm and then adapts it for large instances thanks to the generalization properties of the machine learning model.
Název v anglickém jazyce
Generalization of Machine-Learning Adaptation in Ensemble-Based Self-adaptive Systems
Popis výsledku anglicky
Smart self-adaptive systems are nowadays commonly employed almost in any application domain. Within them, groups of robots, autonomous vehicles, drones, and similar automatons dynamically cooperate to achieve a common goal. An approach to model such dynamic cooperation is via autonomic component ensembles, which are dynamically formed groups of components. Forming ensembles is described via a set of constraints (e.g., form an ensemble of three drones closest to a target that have sufficient battery level to reach the target and stay there). Evaluating these constraints by traditional means (such as a SAT solver) is computationally demanding and does not scale for large systems. This paper proposes an approach for solving ensemble formations based on machine learning which may be relatively faster. The method trains the model on a small instance of the system governed by a computationally demanding algorithm and then adapts it for large instances thanks to the generalization properties of the machine learning model.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GC20-24814J" target="_blank" >GC20-24814J: FluidTrust - popora důvěry pomocí dynamicky proměnlivého řízení přistupu k datům a zdrojům v systémech Průmyslu 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Software Architecture. ECSA 2022 Tracks and Workshops
ISBN
978-3-031-36888-2
ISSN
—
e-ISSN
—
Počet stran výsledku
16
Strana od-do
386-401
Název nakladatele
Springer-Verlag
Místo vydání
Berlin
Místo konání akce
Prague, Czech Republic
Datum konání akce
19. 9. 2022
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
001310761900026