Introducing Estimators-Abstraction for Easy ML Employment in Self-adaptive Architectures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10467810" target="_blank" >RIV/00216208:11320/23:10467810 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-36889-9_25" target="_blank" >https://doi.org/10.1007/978-3-031-36889-9_25</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-36889-9_25" target="_blank" >10.1007/978-3-031-36889-9_25</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Introducing Estimators-Abstraction for Easy ML Employment in Self-adaptive Architectures
Popis výsledku v původním jazyce
Machine learning (ML) has shown its potential in extending the ability of self-adaptive systems to deal with unknowns. To date, there have been several approaches to applying ML in different stages of the adaptation loop. However, the systematic inclusion of ML in the architecture of self-adaptive applications is still an objective that has not been very elaborated yet. In this paper, we show one approach to address this by introducing the concept of estimators in an architecture of a self-adaptive system. The estimator serves to provide predictions on future and currently unobservable values via ML. As a proof of concept, we show how estimators are employed in ML-DEECo-a dedicated ML-enabled component model for adaptive component architectures. It is based on our DEECo component model, which features autonomic components and dynamic component coalitions (ensembles). It makes it possible to specify ML-based adaptation already at the level of the component-based application architecture (i.e., at the model level) without having to explicitly deal with the intricacies of the adaptation loop. As part of the evaluation, we provide an open-source implementation of ML-DEECo run-time framework in Python.
Název v anglickém jazyce
Introducing Estimators-Abstraction for Easy ML Employment in Self-adaptive Architectures
Popis výsledku anglicky
Machine learning (ML) has shown its potential in extending the ability of self-adaptive systems to deal with unknowns. To date, there have been several approaches to applying ML in different stages of the adaptation loop. However, the systematic inclusion of ML in the architecture of self-adaptive applications is still an objective that has not been very elaborated yet. In this paper, we show one approach to address this by introducing the concept of estimators in an architecture of a self-adaptive system. The estimator serves to provide predictions on future and currently unobservable values via ML. As a proof of concept, we show how estimators are employed in ML-DEECo-a dedicated ML-enabled component model for adaptive component architectures. It is based on our DEECo component model, which features autonomic components and dynamic component coalitions (ensembles). It makes it possible to specify ML-based adaptation already at the level of the component-based application architecture (i.e., at the model level) without having to explicitly deal with the intricacies of the adaptation loop. As part of the evaluation, we provide an open-source implementation of ML-DEECo run-time framework in Python.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GC20-24814J" target="_blank" >GC20-24814J: FluidTrust - popora důvěry pomocí dynamicky proměnlivého řízení přistupu k datům a zdrojům v systémech Průmyslu 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science
ISBN
978-3-031-36888-2
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
16
Strana od-do
370-385
Název nakladatele
Springer Internat. Publ.
Místo vydání
Cham
Místo konání akce
Prague, Czech Republic
Datum konání akce
20. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001310761900025