Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ORSUM 2023-6th Workshop on Online Recommender Systems and User Modeling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10469916" target="_blank" >RIV/00216208:11320/23:10469916 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1145/3604915.3608763" target="_blank" >https://doi.org/10.1145/3604915.3608763</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3604915.3608763" target="_blank" >10.1145/3604915.3608763</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ORSUM 2023-6th Workshop on Online Recommender Systems and User Modeling

  • Popis výsledku v původním jazyce

    Modern online platforms for user modeling and recommendation require complex data infrastructures to collect and process data. Some of this data has to be kept to later be used in batches to train personalization models. However, since user activity data can be generated at very fast rates it is also useful to have algorithms able to process data streams online, in real time. Given the continuous and potentially fast change of content, context and user preferences or intents, stream-based models, and their synchronization with batch models can be extremely challenging. Therefore, it is important to investigate methods able to transparently and continuously adapt to the inherent dynamics of user interactions, preferably over long periods of time. Models able to continuously learn from such flows of data are gaining attention in the recommender systems community, and are being increasingly deployed in online platforms. However, many challenges associated with learning from streams need further investigation.The objective of this workshop is to foster contributions and bring together a growing community of researchers and practitioners interested in online, adaptive approaches to user modeling, recommendation and personalization, and their implications regarding multiple dimensions, such as reproducibility, privacy, fairness, diversity, transparency, auditability, and compliance with recently adopted or upcoming legal frameworks worldwide.

  • Název v anglickém jazyce

    ORSUM 2023-6th Workshop on Online Recommender Systems and User Modeling

  • Popis výsledku anglicky

    Modern online platforms for user modeling and recommendation require complex data infrastructures to collect and process data. Some of this data has to be kept to later be used in batches to train personalization models. However, since user activity data can be generated at very fast rates it is also useful to have algorithms able to process data streams online, in real time. Given the continuous and potentially fast change of content, context and user preferences or intents, stream-based models, and their synchronization with batch models can be extremely challenging. Therefore, it is important to investigate methods able to transparently and continuously adapt to the inherent dynamics of user interactions, preferably over long periods of time. Models able to continuously learn from such flows of data are gaining attention in the recommender systems community, and are being increasingly deployed in online platforms. However, many challenges associated with learning from streams need further investigation.The objective of this workshop is to foster contributions and bring together a growing community of researchers and practitioners interested in online, adaptive approaches to user modeling, recommendation and personalization, and their implications regarding multiple dimensions, such as reproducibility, privacy, fairness, diversity, transparency, auditability, and compliance with recently adopted or upcoming legal frameworks worldwide.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 17th ACM Conference on Recommender Systems

  • ISBN

    979-8-4007-0241-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    2

  • Strana od-do

    1272-1273

  • Název nakladatele

    ACM

  • Místo vydání

    New York, NY, USA

  • Místo konání akce

    Singapore, Singapore

  • Datum konání akce

    18. 9. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku