ORSUM 2023-6th Workshop on Online Recommender Systems and User Modeling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10469916" target="_blank" >RIV/00216208:11320/23:10469916 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3604915.3608763" target="_blank" >https://doi.org/10.1145/3604915.3608763</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3604915.3608763" target="_blank" >10.1145/3604915.3608763</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ORSUM 2023-6th Workshop on Online Recommender Systems and User Modeling
Popis výsledku v původním jazyce
Modern online platforms for user modeling and recommendation require complex data infrastructures to collect and process data. Some of this data has to be kept to later be used in batches to train personalization models. However, since user activity data can be generated at very fast rates it is also useful to have algorithms able to process data streams online, in real time. Given the continuous and potentially fast change of content, context and user preferences or intents, stream-based models, and their synchronization with batch models can be extremely challenging. Therefore, it is important to investigate methods able to transparently and continuously adapt to the inherent dynamics of user interactions, preferably over long periods of time. Models able to continuously learn from such flows of data are gaining attention in the recommender systems community, and are being increasingly deployed in online platforms. However, many challenges associated with learning from streams need further investigation.The objective of this workshop is to foster contributions and bring together a growing community of researchers and practitioners interested in online, adaptive approaches to user modeling, recommendation and personalization, and their implications regarding multiple dimensions, such as reproducibility, privacy, fairness, diversity, transparency, auditability, and compliance with recently adopted or upcoming legal frameworks worldwide.
Název v anglickém jazyce
ORSUM 2023-6th Workshop on Online Recommender Systems and User Modeling
Popis výsledku anglicky
Modern online platforms for user modeling and recommendation require complex data infrastructures to collect and process data. Some of this data has to be kept to later be used in batches to train personalization models. However, since user activity data can be generated at very fast rates it is also useful to have algorithms able to process data streams online, in real time. Given the continuous and potentially fast change of content, context and user preferences or intents, stream-based models, and their synchronization with batch models can be extremely challenging. Therefore, it is important to investigate methods able to transparently and continuously adapt to the inherent dynamics of user interactions, preferably over long periods of time. Models able to continuously learn from such flows of data are gaining attention in the recommender systems community, and are being increasingly deployed in online platforms. However, many challenges associated with learning from streams need further investigation.The objective of this workshop is to foster contributions and bring together a growing community of researchers and practitioners interested in online, adaptive approaches to user modeling, recommendation and personalization, and their implications regarding multiple dimensions, such as reproducibility, privacy, fairness, diversity, transparency, auditability, and compliance with recently adopted or upcoming legal frameworks worldwide.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 17th ACM Conference on Recommender Systems
ISBN
979-8-4007-0241-9
ISSN
—
e-ISSN
—
Počet stran výsledku
2
Strana od-do
1272-1273
Název nakladatele
ACM
Místo vydání
New York, NY, USA
Místo konání akce
Singapore, Singapore
Datum konání akce
18. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—