ADAM & RAL: Adaptive Memory Learning and Reinforcement Active Learning for Network Monitoring
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00338616" target="_blank" >RIV/68407700:21230/19:00338616 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.23919/CNSM46954.2019.9012675" target="_blank" >https://doi.org/10.23919/CNSM46954.2019.9012675</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/CNSM46954.2019.9012675" target="_blank" >10.23919/CNSM46954.2019.9012675</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ADAM & RAL: Adaptive Memory Learning and Reinforcement Active Learning for Network Monitoring
Popis výsledku v původním jazyce
Network-traffic data commonly arrives in the form of fast data streams; online network-monitoring systems continuously analyze these kinds of streams, sequentially collecting measurements over time. Continuous and dynamic learning is an effective learning strategy when operating in these fast and dynamic environments, where concept drifts constantly occur. In this paper, we propose different approaches for stream-based machine learning, able to analyze network-traffic streams on the fly, using supervised learning techniques. We address two major challenges associated to stream-based machine learning and online network monitoring: (i) how to dynamically learn from and adapt to non-stationary data and patterns changing over time, and (ii) how to deal with the limited availability of ground truth or labeled data to continuously tune a supervised learning model. We introduce ADAM & RAL, two stream-based machine-learning approaches to tackle these challenges. ADAM implements multiple stream-based machine-learning models and relies on an adaptive memory strategy to dynamically adapt the size of the system's learning memory to the most recent data distribution, triggering new learning steps when concept drifts are detected. RAL implements a stream-based active-learning strategy to reduce the amount of labeled data needed for stream-based learning, dynamically deciding on the most informative samples to integrate into the continuous learning scheme. Using a reinforcement learning loop, RAL improves prediction performance by additionally learning from the goodness of its previous sample-selection decisions. We focus on a particularly challenging problem in network monitoring: continuously tuning detection models able to recognize network attacks over time.
Název v anglickém jazyce
ADAM & RAL: Adaptive Memory Learning and Reinforcement Active Learning for Network Monitoring
Popis výsledku anglicky
Network-traffic data commonly arrives in the form of fast data streams; online network-monitoring systems continuously analyze these kinds of streams, sequentially collecting measurements over time. Continuous and dynamic learning is an effective learning strategy when operating in these fast and dynamic environments, where concept drifts constantly occur. In this paper, we propose different approaches for stream-based machine learning, able to analyze network-traffic streams on the fly, using supervised learning techniques. We address two major challenges associated to stream-based machine learning and online network monitoring: (i) how to dynamically learn from and adapt to non-stationary data and patterns changing over time, and (ii) how to deal with the limited availability of ground truth or labeled data to continuously tune a supervised learning model. We introduce ADAM & RAL, two stream-based machine-learning approaches to tackle these challenges. ADAM implements multiple stream-based machine-learning models and relies on an adaptive memory strategy to dynamically adapt the size of the system's learning memory to the most recent data distribution, triggering new learning steps when concept drifts are detected. RAL implements a stream-based active-learning strategy to reduce the amount of labeled data needed for stream-based learning, dynamically deciding on the most informative samples to integrate into the continuous learning scheme. Using a reinforcement learning loop, RAL improves prediction performance by additionally learning from the goodness of its previous sample-selection decisions. We focus on a particularly challenging problem in network monitoring: continuously tuning detection models able to recognize network attacks over time.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CNSM 15th International Conference on Network and Service Management
ISBN
978-3-903176-24-9
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
St. Paul, Minnesota
Místo konání akce
Halifax
Datum konání akce
21. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000552229800017