Adaptive and Reinforcement Learning Approaches for Online Network Monitoring and Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00346218" target="_blank" >RIV/68407700:21230/21:00346218 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TNSM.2020.3037486" target="_blank" >https://doi.org/10.1109/TNSM.2020.3037486</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TNSM.2020.3037486" target="_blank" >10.1109/TNSM.2020.3037486</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive and Reinforcement Learning Approaches for Online Network Monitoring and Analysis
Popis výsledku v původním jazyce
Network-monitoring data commonly arrives in the form of fast and changing data streams. Continuous and dynamic learning is an effective learning strategy when dealing with such data, where concept drifts constantly occur. We propose different stream-based, adaptive learning approaches to analyze network-traffic streams on the fly. We address two major challenges associated to stream-based machine learning and online network monitoring: (i) how to dynamically learn from and adapt to non-stationary data changing over time, and (ii) how to deal with the limited availability of labeled data to continuous lytune a supervised-learning model. We introduce ADAM & RAL,two stream-based machine-learning techniques to tackle these challenges. ADAM relies on adaptive memory strategies to dynamically tune stream-based learning models to changes in the input data distribution. RAL combines reinforcement learning with stream-based active-learning to reduce the amount of labeled data needed for continual learning, dynamically deciding on the most informative samples to learn from. We apply ADAM & RAL to the real-time detection of network attacks in Internet network traffic, and show that it is possible to continuously achieve high detection accuracy even under the occurrence of concept drifts,limiting the amount of labeled data needed for learning.
Název v anglickém jazyce
Adaptive and Reinforcement Learning Approaches for Online Network Monitoring and Analysis
Popis výsledku anglicky
Network-monitoring data commonly arrives in the form of fast and changing data streams. Continuous and dynamic learning is an effective learning strategy when dealing with such data, where concept drifts constantly occur. We propose different stream-based, adaptive learning approaches to analyze network-traffic streams on the fly. We address two major challenges associated to stream-based machine learning and online network monitoring: (i) how to dynamically learn from and adapt to non-stationary data changing over time, and (ii) how to deal with the limited availability of labeled data to continuous lytune a supervised-learning model. We introduce ADAM & RAL,two stream-based machine-learning techniques to tackle these challenges. ADAM relies on adaptive memory strategies to dynamically tune stream-based learning models to changes in the input data distribution. RAL combines reinforcement learning with stream-based active-learning to reduce the amount of labeled data needed for continual learning, dynamically deciding on the most informative samples to learn from. We apply ADAM & RAL to the real-time detection of network attacks in Internet network traffic, and show that it is possible to continuously achieve high detection accuracy even under the occurrence of concept drifts,limiting the amount of labeled data needed for learning.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Network and Service Management
ISSN
1932-4537
e-ISSN
1932-4537
Svazek periodika
18
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
1832-1849
Kód UT WoS článku
000660636700051
EID výsledku v databázi Scopus
2-s2.0-85096365931