Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On rings determined by their idempotents and units

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10471834" target="_blank" >RIV/00216208:11320/23:10471834 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=satbwW_OJ2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=satbwW_OJ2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/00927872.2023.2173762" target="_blank" >10.1080/00927872.2023.2173762</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On rings determined by their idempotents and units

  • Popis výsledku v původním jazyce

    This paper describes properties of three certain classes of rings determined by conditions on idempotents and units, namely, the condition that any two generators of each principal right ideal are associated (UG rings), the condition that every principal right ideal is generated by a sum of a unit and an idempotent (Pr ), and the condition xy = 0 implies xsy = 0 for a sum of idempotent and unit s and any elements x, y of a ring (idun-semicommutative rings). It is proved that the class of all UG rings contains every local as well as every von Neumann regular ring, and the condition Pr is satisfied by both semiperfect and regular rings. Both local and abelian regular rings are proved to be necessarily idun-semicommutative. For all three classes are presented some closure properties and illustrating examples.

  • Název v anglickém jazyce

    On rings determined by their idempotents and units

  • Popis výsledku anglicky

    This paper describes properties of three certain classes of rings determined by conditions on idempotents and units, namely, the condition that any two generators of each principal right ideal are associated (UG rings), the condition that every principal right ideal is generated by a sum of a unit and an idempotent (Pr ), and the condition xy = 0 implies xsy = 0 for a sum of idempotent and unit s and any elements x, y of a ring (idun-semicommutative rings). It is proved that the class of all UG rings contains every local as well as every von Neumann regular ring, and the condition Pr is satisfied by both semiperfect and regular rings. Both local and abelian regular rings are proved to be necessarily idun-semicommutative. For all three classes are presented some closure properties and illustrating examples.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Communications in Algebra

  • ISSN

    0092-7872

  • e-ISSN

    1532-4125

  • Svazek periodika

    51

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    000923959800001

  • EID výsledku v databázi Scopus

    2-s2.0-85147666901