ON THE NUMBER OF QUADRATIC ORTHOMORPHISMS THAT PRODUCE MAXIMALLY NONASSOCIATIVE QUASIGROUPS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10471873" target="_blank" >RIV/00216208:11320/23:10471873 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KL87B~feZE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KL87B~feZE</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1446788722000386" target="_blank" >10.1017/S1446788722000386</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ON THE NUMBER OF QUADRATIC ORTHOMORPHISMS THAT PRODUCE MAXIMALLY NONASSOCIATIVE QUASIGROUPS
Popis výsledku v původním jazyce
Let q be an odd prime power and suppose that a,bELEMENT OFFq are such that ab and (1-a)(1-b) are nonzero squares. Let Qa,b=(Fq,ASTERISK OPERATOR) be the quasigroup in which the operation is defined by uASTERISK OPERATORv=u+a(v-u) if v-u is a square, and uASTERISK OPERATORv=u+b(v-u) if v-u is a nonsquare. This quasigroup is called maximally nonassociative if it satisfies xASTERISK OPERATOR(yASTERISK OPERATORz)=(xASTERISK OPERATORy)ASTERISK OPERATORzLEFT RIGHT DOUBLE ARROWx=y=z. Denote by σ(q) the number of (a,b) for which Qa,b is maximally nonassociative. We show that there exist constants αALMOST EQUAL TO0.02908 and βALMOST EQUAL TO0.01259 such that if qIDENTICAL TO1mod4, then limσ(q)/q2=α, and if qIDENTICAL TO3mod4, then limσ(q)/q2=β.
Název v anglickém jazyce
ON THE NUMBER OF QUADRATIC ORTHOMORPHISMS THAT PRODUCE MAXIMALLY NONASSOCIATIVE QUASIGROUPS
Popis výsledku anglicky
Let q be an odd prime power and suppose that a,bELEMENT OFFq are such that ab and (1-a)(1-b) are nonzero squares. Let Qa,b=(Fq,ASTERISK OPERATOR) be the quasigroup in which the operation is defined by uASTERISK OPERATORv=u+a(v-u) if v-u is a square, and uASTERISK OPERATORv=u+b(v-u) if v-u is a nonsquare. This quasigroup is called maximally nonassociative if it satisfies xASTERISK OPERATOR(yASTERISK OPERATORz)=(xASTERISK OPERATORy)ASTERISK OPERATORzLEFT RIGHT DOUBLE ARROWx=y=z. Denote by σ(q) the number of (a,b) for which Qa,b is maximally nonassociative. We show that there exist constants αALMOST EQUAL TO0.02908 and βALMOST EQUAL TO0.01259 such that if qIDENTICAL TO1mod4, then limσ(q)/q2=α, and if qIDENTICAL TO3mod4, then limσ(q)/q2=β.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the Australian Mathematical Society
ISSN
1446-7887
e-ISSN
1446-8107
Svazek periodika
115
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
AU - Austrálie
Počet stran výsledku
26
Strana od-do
311-336
Kód UT WoS článku
000936762700001
EID výsledku v databázi Scopus
2-s2.0-85177810821