Induced odd cycle packing number, independent sets, and chromatic number
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473808" target="_blank" >RIV/00216208:11320/23:10473808 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JiDIp0EpWF" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JiDIp0EpWF</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.22932" target="_blank" >10.1002/jgt.22932</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Induced odd cycle packing number, independent sets, and chromatic number
Popis výsledku v původním jazyce
The induced odd cycle packing number iocp(G) of a graph G is the maximum integer k such that G contains an induced subgraph consisting of k pairwise vertex-disjoint odd cycles. Motivated by applications to geometric graphs, Bonamy et al. proved that graphs of bounded induced odd cycle packing number, bounded Vapnik-Chervonenkis (VC) dimension, and linear independence number admit a randomized efficient polynomial-time approximation scheme for the independence number. We show that the assumption of bounded VC dimension is not necessary, exhibiting a randomized algorithm that for any integers k >= 0 and t >= 1 and any n-vertex graph G of induced odd cycle packing number at most k returns in time O-k,O-t(n(k+4)) an independent set of G whose size is at least alpha(G)-n/t (G)-n with high probability. In addition, we present chi-boundedness results for graphs with bounded odd cycle packing number, and use them to design a quasipolynomial-time approximation scheme for the independence number only assuming bounded induced odd cycle packing number.
Název v anglickém jazyce
Induced odd cycle packing number, independent sets, and chromatic number
Popis výsledku anglicky
The induced odd cycle packing number iocp(G) of a graph G is the maximum integer k such that G contains an induced subgraph consisting of k pairwise vertex-disjoint odd cycles. Motivated by applications to geometric graphs, Bonamy et al. proved that graphs of bounded induced odd cycle packing number, bounded Vapnik-Chervonenkis (VC) dimension, and linear independence number admit a randomized efficient polynomial-time approximation scheme for the independence number. We show that the assumption of bounded VC dimension is not necessary, exhibiting a randomized algorithm that for any integers k >= 0 and t >= 1 and any n-vertex graph G of induced odd cycle packing number at most k returns in time O-k,O-t(n(k+4)) an independent set of G whose size is at least alpha(G)-n/t (G)-n with high probability. In addition, we present chi-boundedness results for graphs with bounded odd cycle packing number, and use them to design a quasipolynomial-time approximation scheme for the independence number only assuming bounded induced odd cycle packing number.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-04611S" target="_blank" >GA17-04611S: Ramseyovské aspekty barvení grafů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
1097-0118
Svazek periodika
103
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
502-516
Kód UT WoS článku
000939501100001
EID výsledku v databázi Scopus
2-s2.0-85148458968