Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Odd Chromatic Number of Graph Classes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00370168" target="_blank" >RIV/68407700:21240/23:00370168 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-031-43380-1_4" target="_blank" >https://doi.org/10.1007/978-3-031-43380-1_4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-43380-1_4" target="_blank" >10.1007/978-3-031-43380-1_4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Odd Chromatic Number of Graph Classes

  • Popis výsledku v původním jazyce

    A graph is called odd (respectively, even) if every vertex has odd (respectively, even) degree. Gallai proved that every graph can be partitioned into two even induced subgraphs, or into an odd and an even induced subgraph. We refer to a partition into odd subgraphs as an odd colouring of G. Scott [Graphs and Combinatorics, 2001] proved that a graph admits an odd colouring if and only if it has an even number of vertices. We say that a graph G is k-odd colourable if it can be partitioned into at most k odd induced subgraphs. We initiate the systematic study of odd colouring and odd chromatic number of graph classes. In particular, we consider for a number of classes whether they have bounded odd chromatic number. Our main results are that interval graphs, graphs of bounded modular-width and graphs of bounded maximum degree all have bounded odd chromatic number.

  • Název v anglickém jazyce

    Odd Chromatic Number of Graph Classes

  • Popis výsledku anglicky

    A graph is called odd (respectively, even) if every vertex has odd (respectively, even) degree. Gallai proved that every graph can be partitioned into two even induced subgraphs, or into an odd and an even induced subgraph. We refer to a partition into odd subgraphs as an odd colouring of G. Scott [Graphs and Combinatorics, 2001] proved that a graph admits an odd colouring if and only if it has an even number of vertices. We say that a graph G is k-odd colourable if it can be partitioned into at most k odd induced subgraphs. We initiate the systematic study of odd colouring and odd chromatic number of graph classes. In particular, we consider for a number of classes whether they have bounded odd chromatic number. Our main results are that interval graphs, graphs of bounded modular-width and graphs of bounded maximum degree all have bounded odd chromatic number.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science

  • ISBN

    978-3-031-43379-5

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    15

  • Strana od-do

    44-58

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Fribourg

  • Datum konání akce

    28. 6. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001162209000004