Optimality problems in Orlicz spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475499" target="_blank" >RIV/00216208:11320/23:10475499 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14330/23:00133451
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KPoXo77ASj" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KPoXo77ASj</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2023.109273" target="_blank" >10.1016/j.aim.2023.109273</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimality problems in Orlicz spaces
Popis výsledku v původním jazyce
In mathematical modelling, the data and solutions are represented as measurable functions and their quality is oftentimes captured by the membership to a certain function space. One of the core questions for an analysis of a model is the mutual relationship between the data and solution quality. The optimality of the obtained results deserves aspecial focus. It requires acareful choice of families of function spaces balancing between their expressivity, i.e. the ability to capture fine properties of the model, and their accessibility, i.e. its technical difficulty for practical use. This paper presents aunified and general approach to optimality problems in Orlicz spaces. Orlicz spaces are parametrized by a single convex function and neatly balance the expressivity and accessibility. We prove a general principle that yields an easily verifiable necessary and sufficient condition for the existence or the non-existence of an optimal Orlicz space in various tasks. We demonstrate its use in specific problems, including the continuity of Sobolev embeddings and boundedness of integral operators such as the Hardy-Littlewood maximal operator and the Laplace transform.
Název v anglickém jazyce
Optimality problems in Orlicz spaces
Popis výsledku anglicky
In mathematical modelling, the data and solutions are represented as measurable functions and their quality is oftentimes captured by the membership to a certain function space. One of the core questions for an analysis of a model is the mutual relationship between the data and solution quality. The optimality of the obtained results deserves aspecial focus. It requires acareful choice of families of function spaces balancing between their expressivity, i.e. the ability to capture fine properties of the model, and their accessibility, i.e. its technical difficulty for practical use. This paper presents aunified and general approach to optimality problems in Orlicz spaces. Orlicz spaces are parametrized by a single convex function and neatly balance the expressivity and accessibility. We prove a general principle that yields an easily verifiable necessary and sufficient condition for the existence or the non-existence of an optimal Orlicz space in various tasks. We demonstrate its use in specific problems, including the continuity of Sobolev embeddings and boundedness of integral operators such as the Hardy-Littlewood maximal operator and the Laplace transform.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_053%2F0016952" target="_blank" >EF18_053/0016952: Postdoc2MUNI</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Mathematics
ISSN
0001-8708
e-ISSN
1090-2082
Svazek periodika
2023
Číslo periodika v rámci svazku
432
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
58
Strana od-do
1-58
Kód UT WoS článku
001078404400001
EID výsledku v databázi Scopus
2-s2.0-85171149845