Some properties of conjunctivity (subfitness) in generalized settings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475896" target="_blank" >RIV/00216208:11320/23:10475896 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=21t6Vi4.HQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=21t6Vi4.HQ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2989/16073606.2023.2247793" target="_blank" >10.2989/16073606.2023.2247793</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Some properties of conjunctivity (subfitness) in generalized settings
Popis výsledku v původním jazyce
The property of subfitness used in point-free topology (roughly speaking) to replace the slightly stronger T-1-separation, appeared (as disjunctivity) already in the pioneering Wallman's [16], then practically disappeared to reappear again (conjunctivity, subfitness), until it was in the recent decades recognized as an utmost important condition playing a very special role. Recently, it was also observed that this property (or its dual) appeared independently in general poset setting (e.g. as separativity in connection with forcing). In a recent paper [2], Delzell, Ighedo and Madden discussed it in the context of semilattices. In this article we discuss it on the background of the systems of meet-sets (subsets closed under existing infima) in posets of various generality (semilattices, lattices, distributive lattices, complete lattices) and present parallels of some localic (frame) facts, including a generalized variant of fitness.
Název v anglickém jazyce
Some properties of conjunctivity (subfitness) in generalized settings
Popis výsledku anglicky
The property of subfitness used in point-free topology (roughly speaking) to replace the slightly stronger T-1-separation, appeared (as disjunctivity) already in the pioneering Wallman's [16], then practically disappeared to reappear again (conjunctivity, subfitness), until it was in the recent decades recognized as an utmost important condition playing a very special role. Recently, it was also observed that this property (or its dual) appeared independently in general poset setting (e.g. as separativity in connection with forcing). In a recent paper [2], Delzell, Ighedo and Madden discussed it in the context of semilattices. In this article we discuss it on the background of the systems of meet-sets (subsets closed under existing infima) in posets of various generality (semilattices, lattices, distributive lattices, complete lattices) and present parallels of some localic (frame) facts, including a generalized variant of fitness.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Quaestiones Mathematicae
ISSN
1607-3606
e-ISSN
1727-933X
Svazek periodika
46
Číslo periodika v rámci svazku
Supplement 1
Stát vydavatele periodika
ZA - Jihoafrická republika
Počet stran výsledku
14
Strana od-do
239-252
Kód UT WoS článku
001098712000008
EID výsledku v databázi Scopus
2-s2.0-85175552404