Anomalous magnetoresistance by breaking ice rule in Bi2Ir2O7/Dy2Ti2O7 heterostructure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476208" target="_blank" >RIV/00216208:11320/23:10476208 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=g6H5C0pVJC" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=g6H5C0pVJC</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41467-023-36886-2" target="_blank" >10.1038/s41467-023-36886-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anomalous magnetoresistance by breaking ice rule in Bi2Ir2O7/Dy2Ti2O7 heterostructure
Popis výsledku v původním jazyce
While geometrically frustrated quantum magnets host rich exotic spin states with potentials for revolutionary quantum technologies, most of them are necessarily good insulators which are difficult to be integrated with modern electrical circuit. The grand challenge is to electrically detect the emergent fluctuations and excitations by introducing charge carriers that interact with the localized spins without destroying their collective spin states. Here, we show that, by designing a Bi2Ir2O7/Dy2Ti2O7 heterostructure, the breaking of the spin-ice rule in insulating Dy2Ti2O7 leads to a charge response in the conducting Bi2Ir2O7 measured as anomalous magnetoresistance during the field-induced Kagome ice-to-saturated ice transition. The magnetoresistive anomaly also captures the characteristic angular and temperature dependence of this ice-rule-breaking transition, which has been understood as magnetic monopole condensation. These results demonstrate a novel heteroepitaxial approach for electronically probing the transition between exotic insulating spin states, laying out a blueprint for the metallization of frustrated quantum magnets. Spin ice compounds are typically insulating and introducing carriers can destroy the spin ice state, making integration into electronic devices problematic. Here the authors report a transport response to an ice-rule-breaking transition in a heterostructure of a pyrochlore spin ice and a nonmagnetic metal.
Název v anglickém jazyce
Anomalous magnetoresistance by breaking ice rule in Bi2Ir2O7/Dy2Ti2O7 heterostructure
Popis výsledku anglicky
While geometrically frustrated quantum magnets host rich exotic spin states with potentials for revolutionary quantum technologies, most of them are necessarily good insulators which are difficult to be integrated with modern electrical circuit. The grand challenge is to electrically detect the emergent fluctuations and excitations by introducing charge carriers that interact with the localized spins without destroying their collective spin states. Here, we show that, by designing a Bi2Ir2O7/Dy2Ti2O7 heterostructure, the breaking of the spin-ice rule in insulating Dy2Ti2O7 leads to a charge response in the conducting Bi2Ir2O7 measured as anomalous magnetoresistance during the field-induced Kagome ice-to-saturated ice transition. The magnetoresistive anomaly also captures the characteristic angular and temperature dependence of this ice-rule-breaking transition, which has been understood as magnetic monopole condensation. These results demonstrate a novel heteroepitaxial approach for electronically probing the transition between exotic insulating spin states, laying out a blueprint for the metallization of frustrated quantum magnets. Spin ice compounds are typically insulating and introducing carriers can destroy the spin ice state, making integration into electronic devices problematic. Here the authors report a transport response to an ice-rule-breaking transition in a heterostructure of a pyrochlore spin ice and a nonmagnetic metal.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature Communications
ISSN
2041-1723
e-ISSN
2041-1723
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
1404
Kód UT WoS článku
001035072200008
EID výsledku v databázi Scopus
2-s2.0-85150305399