A Characterization of Edge-Ordered Graphs with Almost Linear Extremal Functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476623" target="_blank" >RIV/00216208:11320/23:10476623 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3DLSpLiXlz" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3DLSpLiXlz</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00493-023-00052-5" target="_blank" >10.1007/s00493-023-00052-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Characterization of Edge-Ordered Graphs with Almost Linear Extremal Functions
Popis výsledku v původním jazyce
The systematic study of Turan-type extremal problems for edge-ordered graphs was initiated by Gerbner et al. (Turan problems for Edge-ordered graphs, 2021). They conjectured that the extremal functions of edge-ordered forests of order chromatic number 2 are n(1+o(1)). Here we resolve this conjecture proving the stronger upper bound of n2(O(vlog n)). This represents a gap in the family of possible extremal functions as other forbidden edge-ordered graphs have extremal functions O(n(C)) for some c > 1. However, our result is probably not the last word: here we conjecture that the even stronger upper bound of n log(O(1)) n also holds for the same set of extremal functions.
Název v anglickém jazyce
A Characterization of Edge-Ordered Graphs with Almost Linear Extremal Functions
Popis výsledku anglicky
The systematic study of Turan-type extremal problems for edge-ordered graphs was initiated by Gerbner et al. (Turan problems for Edge-ordered graphs, 2021). They conjectured that the extremal functions of edge-ordered forests of order chromatic number 2 are n(1+o(1)). Here we resolve this conjecture proving the stronger upper bound of n2(O(vlog n)). This represents a gap in the family of possible extremal functions as other forbidden edge-ordered graphs have extremal functions O(n(C)) for some c > 1. However, our result is probably not the last word: here we conjecture that the even stronger upper bound of n log(O(1)) n also holds for the same set of extremal functions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-19073S" target="_blank" >GA22-19073S: Kombinatorická a výpočetní složitost v topologii a geometrii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Combinatorica
ISSN
0209-9683
e-ISSN
1439-6912
Svazek periodika
43
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
1111-1123
Kód UT WoS článku
001051214300001
EID výsledku v databázi Scopus
2-s2.0-85168348865