Developing machine-learned potentials to simultaneously capture the dynamics of excess protons and hydroxide ions in classical and path integral simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476799" target="_blank" >RIV/00216208:11320/23:10476799 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1b1XLkYNVK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1b1XLkYNVK</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0162066" target="_blank" >10.1063/5.0162066</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Developing machine-learned potentials to simultaneously capture the dynamics of excess protons and hydroxide ions in classical and path integral simulations
Popis výsledku v původním jazyce
The transport of excess protons and hydroxide ions in water underlies numerous important chemical and biological processes. Accurately simulating the associated transport mechanisms ideally requires utilizing ab initio molecular dynamics simulations to model the bond breaking and formation involved in proton transfer and path-integral simulations to model the nuclear quantum effects relevant to light hydrogen atoms. These requirements result in a prohibitive computational cost, especially at the time and length scales needed to converge proton transport properties. Here, we present machine-learned potentials (MLPs) that can model both excess protons and hydroxide ions at the generalized gradient approximation and hybrid density functional theory levels of accuracy and use them to perform multiple nanoseconds of both classical and path-integral proton defect simulations at a fraction of the cost of the corresponding ab initio simulations. We show that the MLPs are able to reproduce ab initio trends and converge properties such as the diffusion coefficients of both excess protons and hydroxide ions. We use our multi-nanosecond simulations, which allow us to monitor large numbers of proton transfer events, to analyze the role of hypercoordination in the transport mechanism of the hydroxide ion and provide further evidence for the asymmetry in diffusion between excess protons and hydroxide ions.
Název v anglickém jazyce
Developing machine-learned potentials to simultaneously capture the dynamics of excess protons and hydroxide ions in classical and path integral simulations
Popis výsledku anglicky
The transport of excess protons and hydroxide ions in water underlies numerous important chemical and biological processes. Accurately simulating the associated transport mechanisms ideally requires utilizing ab initio molecular dynamics simulations to model the bond breaking and formation involved in proton transfer and path-integral simulations to model the nuclear quantum effects relevant to light hydrogen atoms. These requirements result in a prohibitive computational cost, especially at the time and length scales needed to converge proton transport properties. Here, we present machine-learned potentials (MLPs) that can model both excess protons and hydroxide ions at the generalized gradient approximation and hybrid density functional theory levels of accuracy and use them to perform multiple nanoseconds of both classical and path-integral proton defect simulations at a fraction of the cost of the corresponding ab initio simulations. We show that the MLPs are able to reproduce ab initio trends and converge properties such as the diffusion coefficients of both excess protons and hydroxide ions. We use our multi-nanosecond simulations, which allow us to monitor large numbers of proton transfer events, to analyze the role of hypercoordination in the transport mechanism of the hydroxide ion and provide further evidence for the asymmetry in diffusion between excess protons and hydroxide ions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-27987S" target="_blank" >GA21-27987S: Přesná molekulární dynamika kapalin a solvatace pomocí strojového učení ab initio interakcí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Physics
ISSN
0021-9606
e-ISSN
1089-7690
Svazek periodika
159
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
074101
Kód UT WoS článku
001048487400004
EID výsledku v databázi Scopus
2-s2.0-85168065659