Creating 3D Diorama from Single Image with Deep Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10486946" target="_blank" >RIV/00216208:11320/23:10486946 - isvavai.cz</a>
Výsledek na webu
<a href="https://ceur-ws.org/Vol-3498/paper3.pdf" target="_blank" >https://ceur-ws.org/Vol-3498/paper3.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Creating 3D Diorama from Single Image with Deep Learning
Popis výsledku v původním jazyce
Creating 3D scenes is a time-consuming task that requires experience with modeling software. This paper presents a novel approach that combines neural models for panoptic segmentation and monocular depth estimation to construct dioramas. While previous research has explored generating dioramas from single images, to the best of our knowledge, there is no research utilizing deep learning techniques for the task. This paper provides an analysis of existing approaches to diorama generation. We then describe the construction of the diorama, where objects identified by segmentation are separated intodistinct images with transparent backgrounds. These images are then placed in a 3D scene, arranged to reflect the estimated depth of each object. We also address several challenges that had to be overcome. Specifically, we employed fine-tuning to address the limitations of the available depth model when applied to outdoor scenes. Our method has been implemented as an add-on for the open-source 3D software Blender, utilizing neural models in the ONNX format for depth and segmentation inferences.
Název v anglickém jazyce
Creating 3D Diorama from Single Image with Deep Learning
Popis výsledku anglicky
Creating 3D scenes is a time-consuming task that requires experience with modeling software. This paper presents a novel approach that combines neural models for panoptic segmentation and monocular depth estimation to construct dioramas. While previous research has explored generating dioramas from single images, to the best of our knowledge, there is no research utilizing deep learning techniques for the task. This paper provides an analysis of existing approaches to diorama generation. We then describe the construction of the diorama, where objects identified by segmentation are separated intodistinct images with transparent backgrounds. These images are then placed in a 3D scene, arranged to reflect the estimated depth of each object. We also address several challenges that had to be overcome. Specifically, we employed fine-tuning to address the limitations of the available depth model when applied to outdoor scenes. Our method has been implemented as an add-on for the open-source 3D software Blender, utilizing neural models in the ONNX format for depth and segmentation inferences.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CEUR Workshop Proceedings
ISBN
—
ISSN
1613-0073
e-ISSN
1613-0073
Počet stran výsledku
11
Strana od-do
25-35
Název nakladatele
CEUR-WS
Místo vydání
Tatranske Matliare, Slovakia
Místo konání akce
Tatranské Matliare, Slovakia
Datum konání akce
22. 9. 2023
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—