Hedging cryptocurrency options
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10489888" target="_blank" >RIV/00216208:11320/23:10489888 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cFZtQX~s5n" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cFZtQX~s5n</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11147-023-09194-6" target="_blank" >10.1007/s11147-023-09194-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hedging cryptocurrency options
Popis výsledku v původním jazyce
The cryptocurrency market is volatile, non-stationary and non-continuous. Together with liquid derivatives markets, this poses a unique opportunity to study risk management, especially the hedging of options, in a turbulent market. We study the hedge behaviour and effectiveness for the class of affine jump diffusion models and infinite activity Levy processes. First, market data is calibrated to stochastic volatility inspired-implied volatility surfaces to price options. To cover a wide range of market dynamics, we generate Monte Carlo price paths using an stochastic volatility with correlated jumps model, a close-to-actual-market GARCH-filtered kernel density estimation as well as a historical backtest. In all three settings, options are dynamically hedged with Delta, Delta-Gamma, Delta-Vega and Minimum Variance strategies. Including a wide range of market models allows to understand the trade-off in the hedge performance between complete, but overly parsimonious models, and more complex, but incomplete models. The calibration results reveal a strong indication for stochastic volatility, low jump frequency and evidence of infinite activity. Short-dated options are less sensitive to volatility or Gamma hedges. For longer-dated options, tail risk is consistently reduced by multiple-instrument hedges, in particular by employing complete market models with stochastic volatility.
Název v anglickém jazyce
Hedging cryptocurrency options
Popis výsledku anglicky
The cryptocurrency market is volatile, non-stationary and non-continuous. Together with liquid derivatives markets, this poses a unique opportunity to study risk management, especially the hedging of options, in a turbulent market. We study the hedge behaviour and effectiveness for the class of affine jump diffusion models and infinite activity Levy processes. First, market data is calibrated to stochastic volatility inspired-implied volatility surfaces to price options. To cover a wide range of market dynamics, we generate Monte Carlo price paths using an stochastic volatility with correlated jumps model, a close-to-actual-market GARCH-filtered kernel density estimation as well as a historical backtest. In all three settings, options are dynamically hedged with Delta, Delta-Gamma, Delta-Vega and Minimum Variance strategies. Including a wide range of market models allows to understand the trade-off in the hedge performance between complete, but overly parsimonious models, and more complex, but incomplete models. The calibration results reveal a strong indication for stochastic volatility, low jump frequency and evidence of infinite activity. Short-dated options are less sensitive to volatility or Gamma hedges. For longer-dated options, tail risk is consistently reduced by multiple-instrument hedges, in particular by employing complete market models with stochastic volatility.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Review of Derivatives Research
ISSN
1380-6645
e-ISSN
1573-7144
Svazek periodika
26
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
43
Strana od-do
91-133
Kód UT WoS článku
000931750300001
EID výsledku v databázi Scopus
2-s2.0-85147761807