Korean Named Entity Recognition Based on Language-Specific Features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A3WQXAXJJ" target="_blank" >RIV/00216208:11320/23:3WQXAXJJ - isvavai.cz</a>
Výsledek na webu
<a href="http://arxiv.org/abs/2305.06330" target="_blank" >http://arxiv.org/abs/2305.06330</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.48550/arXiv.2305.06330" target="_blank" >10.48550/arXiv.2305.06330</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Korean Named Entity Recognition Based on Language-Specific Features
Popis výsledku v původním jazyce
"In the paper, we propose a novel way of improving named entity recognition in the Korean language using its language-specific features. While the field of named entity recognition has been studied extensively in recent years, the mechanism of efficiently recognizing named entities in Korean has hardly been explored. This is because the Korean language has distinct linguistic properties that prevent models from achieving their best performances. Therefore, an annotation scheme for {Korean corpora} by adopting the CoNLL-U format, which decomposes Korean words into morphemes and reduces the ambiguity of named entities in the original segmentation that may contain functional morphemes such as postpositions and particles, is proposed herein. We investigate how the named entity tags are best represented in this morpheme-based scheme and implement an algorithm to convert word-based {and syllable-based Korean corpora} with named entities into the proposed morpheme-based format. Analyses of the results of {statistical and neural} models reveal that the proposed morpheme-based format is feasible, and the {varied} performances of the models under the influence of various additional language-specific features are demonstrated. Extrinsic conditions were also considered to observe the variance of the performances of the proposed models, given different types of data, including the original segmentation and different types of tagging formats."
Název v anglickém jazyce
Korean Named Entity Recognition Based on Language-Specific Features
Popis výsledku anglicky
"In the paper, we propose a novel way of improving named entity recognition in the Korean language using its language-specific features. While the field of named entity recognition has been studied extensively in recent years, the mechanism of efficiently recognizing named entities in Korean has hardly been explored. This is because the Korean language has distinct linguistic properties that prevent models from achieving their best performances. Therefore, an annotation scheme for {Korean corpora} by adopting the CoNLL-U format, which decomposes Korean words into morphemes and reduces the ambiguity of named entities in the original segmentation that may contain functional morphemes such as postpositions and particles, is proposed herein. We investigate how the named entity tags are best represented in this morpheme-based scheme and implement an algorithm to convert word-based {and syllable-based Korean corpora} with named entities into the proposed morpheme-based format. Analyses of the results of {statistical and neural} models reveal that the proposed morpheme-based format is feasible, and the {varied} performances of the models under the influence of various additional language-specific features are demonstrated. Extrinsic conditions were also considered to observe the variance of the performances of the proposed models, given different types of data, including the original segmentation and different types of tagging formats."
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"Natural Language Engineering"
ISSN
1351-3249
e-ISSN
—
Svazek periodika
""
Číslo periodika v rámci svazku
2023-6-13
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
44
Strana od-do
1-44
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—