Sentiment Analysis Using Aligned Word Embeddings for Uralic Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A3ZLBZFLX" target="_blank" >RIV/00216208:11320/23:3ZLBZFLX - isvavai.cz</a>
Výsledek na webu
<a href="http://arxiv.org/abs/2305.15380" target="_blank" >http://arxiv.org/abs/2305.15380</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.48550/arXiv.2305.15380" target="_blank" >10.48550/arXiv.2305.15380</a>
Alternativní jazyky
Jazyk výsledku
švédština
Název v původním jazyce
Sentiment Analysis Using Aligned Word Embeddings for Uralic Languages
Popis výsledku v původním jazyce
"In this paper, we present an approach for translating word embeddings from a majority language into 4 minority languages: Erzya, Moksha, Udmurt and Komi-Zyrian. Furthermore, we align these word embeddings and present a novel neural network model that is trained on English data to conduct sentiment analysis and then applied on endangered language data through the aligned word embeddings. To test our model, we annotated a small sentiment analysis corpus for the 4 endangered languages and Finnish. Our method reached at least 56% accuracy for each endangered language. The models and the sentiment corpus will be released together with this paper. Our research shows that state-of-the-art neural models can be used with endangered languages with the only requirement being a dictionary between the endangered language and a majority language."
Název v anglickém jazyce
Sentiment Analysis Using Aligned Word Embeddings for Uralic Languages
Popis výsledku anglicky
"In this paper, we present an approach for translating word embeddings from a majority language into 4 minority languages: Erzya, Moksha, Udmurt and Komi-Zyrian. Furthermore, we align these word embeddings and present a novel neural network model that is trained on English data to conduct sentiment analysis and then applied on endangered language data through the aligned word embeddings. To test our model, we annotated a small sentiment analysis corpus for the 4 endangered languages and Finnish. Our method reached at least 56% accuracy for each endangered language. The models and the sentiment corpus will be released together with this paper. Our research shows that state-of-the-art neural models can be used with endangered languages with the only requirement being a dictionary between the endangered language and a majority language."
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů