Aspect-Based Sentiment Analysis for Slovene Texts: Models, Lexicons, and Embeddings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A9ELXC6VL" target="_blank" >RIV/00216208:11320/25:9ELXC6VL - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85192262138&doi=10.1109%2fIATMSI60426.2024.10503382&partnerID=40&md5=7b9e06c82075cf4b53ca0fe16b9d5aa7" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85192262138&doi=10.1109%2fIATMSI60426.2024.10503382&partnerID=40&md5=7b9e06c82075cf4b53ca0fe16b9d5aa7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IATMSI60426.2024.10503382" target="_blank" >10.1109/IATMSI60426.2024.10503382</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Aspect-Based Sentiment Analysis for Slovene Texts: Models, Lexicons, and Embeddings
Popis výsledku v původním jazyce
When performing sentiment analysis on texts mentioning multiple entities, the sentiment towards each of them is not necessarily the same, and it is essential to determine what sentiment applies to each entity separately. In this paper, we study aspect-based sentiment analysis approaches applied to texts in Slovene. We implement three models. In the first model, we use a sentiment lexicon to determine the sentiment of words close to an entity in the same sentence and document and use those as features for a random forest classifier. In the second model, we add a neural model for dependency parsing to the pipeline and construct features based on words close in a sentence's dependency tree instead of sequentially. The third model uses BERT embeddings with a neural classifier to construct embeddings. We evaluate the approaches on the SentiCoref 1.0 corpus of Slovene texts for aspect-based sentiment analysis. © 2024 IEEE.
Název v anglickém jazyce
Aspect-Based Sentiment Analysis for Slovene Texts: Models, Lexicons, and Embeddings
Popis výsledku anglicky
When performing sentiment analysis on texts mentioning multiple entities, the sentiment towards each of them is not necessarily the same, and it is essential to determine what sentiment applies to each entity separately. In this paper, we study aspect-based sentiment analysis approaches applied to texts in Slovene. We implement three models. In the first model, we use a sentiment lexicon to determine the sentiment of words close to an entity in the same sentence and document and use those as features for a random forest classifier. In the second model, we add a neural model for dependency parsing to the pipeline and construct features based on words close in a sentence's dependency tree instead of sequentially. The third model uses BERT embeddings with a neural classifier to construct embeddings. We evaluate the approaches on the SentiCoref 1.0 corpus of Slovene texts for aspect-based sentiment analysis. © 2024 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE Int. Conf. Interdiscip. Approaches Technol. Manag. Soc. Innov., IATMSI
ISBN
979-835036052-3
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
—
Místo konání akce
Gwalior
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—