Syntax Dependency and Semantic Enhancement for Aspect-Based Sentiment Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A8QLNXWBP" target="_blank" >RIV/00216208:11320/25:8QLNXWBP - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205473466&doi=10.23919%2fCCC63176.2024.10661913&partnerID=40&md5=2beae47923a9e41111e5a454a42bcc6e" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205473466&doi=10.23919%2fCCC63176.2024.10661913&partnerID=40&md5=2beae47923a9e41111e5a454a42bcc6e</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/CCC63176.2024.10661913" target="_blank" >10.23919/CCC63176.2024.10661913</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Syntax Dependency and Semantic Enhancement for Aspect-Based Sentiment Analysis
Popis výsledku v původním jazyce
Aspect-based sentiment analysis is a fine-grained sentiment analysis task. In this domain, graph neural models based on dependency trees are widely used. However, effectively utilizing the semantic and syntactic structural information of dependency trees remains a challenging research problem. To address this issue, this paper proposes a Syntax Dependency and Semantics Enhancement (SDSE) model. This model aims to enhance the understanding of specific aspect-related syntactic dependency relations and sentence semantics. Specifically, the SDSE model integrates self-attention mechanisms and aspect-aware attention mechanisms to obtain the attention score matrix of the sentence. Then, leveraging graph convolutional networks on the attention score matrix, the model extracts semantic feature information of the sentence. This approach not only learns semantic associations related to aspects but also captures the overall semantic information of the sentence. Moreover, to mitigate dependency parsing errors, the SDSE model introduces aspect word merging. This involves parsing the sentence after merging aspect words to obtain the merged syntactic dependency graph, thereby enhancing the model's focus on opinion entities. Finally, the dependency graph and processed sentence encodings are fed into graph convolutional networks for training. Experimental results demonstrate that our proposed SDSE model outperforms the current state-of-the-art methods on benchmark datasets. © 2024 Technical Committee on Control Theory, Chinese Association of Automation.
Název v anglickém jazyce
Syntax Dependency and Semantic Enhancement for Aspect-Based Sentiment Analysis
Popis výsledku anglicky
Aspect-based sentiment analysis is a fine-grained sentiment analysis task. In this domain, graph neural models based on dependency trees are widely used. However, effectively utilizing the semantic and syntactic structural information of dependency trees remains a challenging research problem. To address this issue, this paper proposes a Syntax Dependency and Semantics Enhancement (SDSE) model. This model aims to enhance the understanding of specific aspect-related syntactic dependency relations and sentence semantics. Specifically, the SDSE model integrates self-attention mechanisms and aspect-aware attention mechanisms to obtain the attention score matrix of the sentence. Then, leveraging graph convolutional networks on the attention score matrix, the model extracts semantic feature information of the sentence. This approach not only learns semantic associations related to aspects but also captures the overall semantic information of the sentence. Moreover, to mitigate dependency parsing errors, the SDSE model introduces aspect word merging. This involves parsing the sentence after merging aspect words to obtain the merged syntactic dependency graph, thereby enhancing the model's focus on opinion entities. Finally, the dependency graph and processed sentence encodings are fed into graph convolutional networks for training. Experimental results demonstrate that our proposed SDSE model outperforms the current state-of-the-art methods on benchmark datasets. © 2024 Technical Committee on Control Theory, Chinese Association of Automation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Chinese Control Conf., CCC
ISBN
978-988758158-1
ISSN
1934-1768
e-ISSN
—
Počet stran výsledku
6
Strana od-do
8224-8229
Název nakladatele
IEEE Computer Society
Místo vydání
—
Místo konání akce
Kunming
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—