Enhancing aspect-based sentiment analysis with dependency-attention GCN and mutual assistance mechanism
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AYLV8BYFR" target="_blank" >RIV/00216208:11320/25:YLV8BYFR - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169341824&doi=10.1007%2fs10844-023-00811-2&partnerID=40&md5=da9160014c49c7606a9df31667672baf" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169341824&doi=10.1007%2fs10844-023-00811-2&partnerID=40&md5=da9160014c49c7606a9df31667672baf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10844-023-00811-2" target="_blank" >10.1007/s10844-023-00811-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing aspect-based sentiment analysis with dependency-attention GCN and mutual assistance mechanism
Popis výsledku v původním jazyce
Aspect-based sentiment analysis (ABSA) has been extensively studied in recent years. It involves several subtasks for extracting one or more sentiment elements, including the aspect category, aspect term, opinion term, and sentiment polarity. In this paper, we propose two novel approaches to addressing different ABSA subtasks. Firstly, we introduce a Dependency-Attention GCN-based Aspect Opinion Extractor (DAG-AOE) for the Aspect-Opinion Pair Extraction (AOPE) task. DAG-AOE employs an improved graph convolutional network to extract syntactic structure information from text sequences, thereby effectively identifying aspect-opinion pairs in sentences. Secondly, we propose a Mutual Assistance Mechanism-based Category Sentiment Classifier (MAM-CSC) that utilizes the results of DAG-AOE to address the Aspect Sentiment Quad Prediction (ASQP) task. MAM-CSC leverages the semantic relationships between words in a sentence and addresses the two independent classification tasks through a mutual assistance approach. We conduct extensive experiments on benchmark datasets, and the experimental results demonstrate that our models have demonstrated a significant improvement over all baseline methods. Specifically, our models achieved the highest improvement of 1.4% F1 score over the baseline on the AOPE task and 1.5% F1 score on the ASQP task. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
Název v anglickém jazyce
Enhancing aspect-based sentiment analysis with dependency-attention GCN and mutual assistance mechanism
Popis výsledku anglicky
Aspect-based sentiment analysis (ABSA) has been extensively studied in recent years. It involves several subtasks for extracting one or more sentiment elements, including the aspect category, aspect term, opinion term, and sentiment polarity. In this paper, we propose two novel approaches to addressing different ABSA subtasks. Firstly, we introduce a Dependency-Attention GCN-based Aspect Opinion Extractor (DAG-AOE) for the Aspect-Opinion Pair Extraction (AOPE) task. DAG-AOE employs an improved graph convolutional network to extract syntactic structure information from text sequences, thereby effectively identifying aspect-opinion pairs in sentences. Secondly, we propose a Mutual Assistance Mechanism-based Category Sentiment Classifier (MAM-CSC) that utilizes the results of DAG-AOE to address the Aspect Sentiment Quad Prediction (ASQP) task. MAM-CSC leverages the semantic relationships between words in a sentence and addresses the two independent classification tasks through a mutual assistance approach. We conduct extensive experiments on benchmark datasets, and the experimental results demonstrate that our models have demonstrated a significant improvement over all baseline methods. Specifically, our models achieved the highest improvement of 1.4% F1 score over the baseline on the AOPE task and 1.5% F1 score on the ASQP task. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Intelligent Information Systems
ISSN
0925-9902
e-ISSN
—
Svazek periodika
62
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
163-189
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85169341824