Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Enhancing aspect-based sentiment analysis with dependency-attention GCN and mutual assistance mechanism

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AYLV8BYFR" target="_blank" >RIV/00216208:11320/25:YLV8BYFR - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169341824&doi=10.1007%2fs10844-023-00811-2&partnerID=40&md5=da9160014c49c7606a9df31667672baf" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169341824&doi=10.1007%2fs10844-023-00811-2&partnerID=40&md5=da9160014c49c7606a9df31667672baf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10844-023-00811-2" target="_blank" >10.1007/s10844-023-00811-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Enhancing aspect-based sentiment analysis with dependency-attention GCN and mutual assistance mechanism

  • Popis výsledku v původním jazyce

    Aspect-based sentiment analysis (ABSA) has been extensively studied in recent years. It involves several subtasks for extracting one or more sentiment elements, including the aspect category, aspect term, opinion term, and sentiment polarity. In this paper, we propose two novel approaches to addressing different ABSA subtasks. Firstly, we introduce a Dependency-Attention GCN-based Aspect Opinion Extractor (DAG-AOE) for the Aspect-Opinion Pair Extraction (AOPE) task. DAG-AOE employs an improved graph convolutional network to extract syntactic structure information from text sequences, thereby effectively identifying aspect-opinion pairs in sentences. Secondly, we propose a Mutual Assistance Mechanism-based Category Sentiment Classifier (MAM-CSC) that utilizes the results of DAG-AOE to address the Aspect Sentiment Quad Prediction (ASQP) task. MAM-CSC leverages the semantic relationships between words in a sentence and addresses the two independent classification tasks through a mutual assistance approach. We conduct extensive experiments on benchmark datasets, and the experimental results demonstrate that our models have demonstrated a significant improvement over all baseline methods. Specifically, our models achieved the highest improvement of 1.4% F1 score over the baseline on the AOPE task and 1.5% F1 score on the ASQP task. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.

  • Název v anglickém jazyce

    Enhancing aspect-based sentiment analysis with dependency-attention GCN and mutual assistance mechanism

  • Popis výsledku anglicky

    Aspect-based sentiment analysis (ABSA) has been extensively studied in recent years. It involves several subtasks for extracting one or more sentiment elements, including the aspect category, aspect term, opinion term, and sentiment polarity. In this paper, we propose two novel approaches to addressing different ABSA subtasks. Firstly, we introduce a Dependency-Attention GCN-based Aspect Opinion Extractor (DAG-AOE) for the Aspect-Opinion Pair Extraction (AOPE) task. DAG-AOE employs an improved graph convolutional network to extract syntactic structure information from text sequences, thereby effectively identifying aspect-opinion pairs in sentences. Secondly, we propose a Mutual Assistance Mechanism-based Category Sentiment Classifier (MAM-CSC) that utilizes the results of DAG-AOE to address the Aspect Sentiment Quad Prediction (ASQP) task. MAM-CSC leverages the semantic relationships between words in a sentence and addresses the two independent classification tasks through a mutual assistance approach. We conduct extensive experiments on benchmark datasets, and the experimental results demonstrate that our models have demonstrated a significant improvement over all baseline methods. Specifically, our models achieved the highest improvement of 1.4% F1 score over the baseline on the AOPE task and 1.5% F1 score on the ASQP task. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Intelligent Information Systems

  • ISSN

    0925-9902

  • e-ISSN

  • Svazek periodika

    62

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    27

  • Strana od-do

    163-189

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85169341824