Enhanced Packed Marker with Entity Information for Aspect Sentiment Triplet Extraction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A38KR6MH4" target="_blank" >RIV/00216208:11320/25:38KR6MH4 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200546378&doi=10.1145%2f3626772.3657734&partnerID=40&md5=3bee1c871d1a0ec014a3f9e9437fede4" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200546378&doi=10.1145%2f3626772.3657734&partnerID=40&md5=3bee1c871d1a0ec014a3f9e9437fede4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3626772.3657734" target="_blank" >10.1145/3626772.3657734</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhanced Packed Marker with Entity Information for Aspect Sentiment Triplet Extraction
Popis výsledku v původním jazyce
Aspect sentiment triplet extraction (ASTE) is an emerging sentiment analysis task that aims to extract sentiment triplets from review sentences. Each sentiment triplet consists of an aspect, corresponding opinion, and sentiment. Although extensive research has been conducted on the ASTE task, existing methods use the span representations to predict the relationship between spans, failing to consider the interrelation between span pairs. On the other hand, early fusion of entity information is critical for sentiment classification. In this paper, we propose an Enhanced Packed Marker with Entity Information (EPMEI) framework for ASTE task to address the above limitations of the existing works. Specifically, EPMEI consists of entity recognition and sentiment classification models. The entity information is obtained from the entity recognition model first. After that, we insert solid markers with entity information at the input layer of the sentiment classification model to highlight the subject span and improve subject span representation. Furthermore, we introduce a subject-oriented packing strategy, which packs each subject span and all its levitated markers of object spans to model the interrelation between the same-subject span pairs. Extensive experimental results on four ASTE benchmark datasets demonstrate that EPMEI achieves the state-of-the-art baseline. Our code can be found in https://github.com/MKMaS-GUET/EPMEI. © 2024 ACM.
Název v anglickém jazyce
Enhanced Packed Marker with Entity Information for Aspect Sentiment Triplet Extraction
Popis výsledku anglicky
Aspect sentiment triplet extraction (ASTE) is an emerging sentiment analysis task that aims to extract sentiment triplets from review sentences. Each sentiment triplet consists of an aspect, corresponding opinion, and sentiment. Although extensive research has been conducted on the ASTE task, existing methods use the span representations to predict the relationship between spans, failing to consider the interrelation between span pairs. On the other hand, early fusion of entity information is critical for sentiment classification. In this paper, we propose an Enhanced Packed Marker with Entity Information (EPMEI) framework for ASTE task to address the above limitations of the existing works. Specifically, EPMEI consists of entity recognition and sentiment classification models. The entity information is obtained from the entity recognition model first. After that, we insert solid markers with entity information at the input layer of the sentiment classification model to highlight the subject span and improve subject span representation. Furthermore, we introduce a subject-oriented packing strategy, which packs each subject span and all its levitated markers of object spans to model the interrelation between the same-subject span pairs. Extensive experimental results on four ASTE benchmark datasets demonstrate that EPMEI achieves the state-of-the-art baseline. Our code can be found in https://github.com/MKMaS-GUET/EPMEI. © 2024 ACM.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
SIGIR - Proc. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr.
ISBN
979-840070431-4
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
619-629
Název nakladatele
Association for Computing Machinery, Inc
Místo vydání
—
Místo konání akce
Washington D.C.
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—